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The well-known technique of structural equation modelling (SEM) has roots in two very different techniques 
developed in two very different fields. Path analysis with its graphical representations of effects and effect decom-
position comes from genetics research, where Sewall Wright (1920, 1921) proposed a method to predict heritability 
of the piebald pattern of guinea-pigs. Factor analysis with its latent variables is even older, with an early paper by 
Spearman in 1904, and was developed in research on intelligence, to explain correlations between various ability 
tests (Spearman, 1928). Karl Jöreskog (1973) coined the name LISREL (LInear Structural RELations) for the frame-
work that integrates the techniques of path analysis and factor analysis, as well as for the computer program that 
made the technique available to researchers in psychology and related fields. They embraced the technique, now 
generally referred to as SEM, for its sophistication of the underlying theory, the suitability to address substantive 
hypotheses, and the availability and simplicity of the related software. SEM is constantly developing, as researchers 
are extending SEM to non-standard situations, so that it can be used with both observed and latent variables, both 
continuous and discrete variables, with normal and non-normal distributions, to model linear and non-linear 
relationships. SEM estimation methods are extended for applications of, for example, interaction effects, non-linear 
growth, multilevel data, meta-analysis, and so on.

This issue of the Netherlands Journal of Psychology is Part 1 of two special issues that give account of ten papers 
that illustrate non-standard applications of SEM, as presented at the 2012 Meeting of the Working Group SEM 
(Amsterdam, 22-23 March 2012). Since the foundation of the Working Group Structural Equation Modelling in 1986, 
advanced structural equation modelling has been discussed in annual meetings at various locations in Germany, 
the Netherlands, and Switzerland. The presentation and discussion of methodological problems and developments 
in structural equation modelling are the main objective of the Working Group. 

The first article in the present issue, by Molenaar and Dolan (2012), introduces the traditional latent trait models 
commonly used in psychology to make inferences about constructs such as extraversion. The authors show that 
these traditional models are not in line with some substantive hypotheses from the psychological literature and 
they present specific extensions of the traditional models to account for these violations. The other four articles in 
this issue involve longitudinal structural equation models. Verdam, Oort, Visser, and Sprangers (2012) use SEM to 
compare two approaches to the detection of true change and response shift, and to test the assumptions that 
underlie the use of retrospective pretests. They illustrate the methods with quality of life data from cancer patients 
undergoing invasive surgery. Delsing and Oud (2012) propose an alternative to two existing models (cross-lagged 
panel models and latent growth curve models) to investigate development over time, in which the time variable is 
considered continuous instead of discrete. They use data of adolescents’ externalising and internalising problem 
behaviour to demonstrate how continuous time analysis of the cross-lagged panel model does not have some of the 
problems of the other two models. The article by De Kort, Dolan, and Boomsma (2012) deals with genetics research 
in longitudinal twin designs. In the classical twin study, genetic and environmental influences on a phenotype are 
usually assumed to be independent. De Kort et al. explain why this may be an unrealistic assumption and they 
propose a way of incorporating covariance between genetic and environmental factors into the classical twin model. 
In the final article in this issue, King-Kallimanis, Oort, Tishelman, and Sprangers (2012) compare the results of two 
procedures that can be used in the specification search that is part of testing measurement invariance in longitudinal 
data with SEM: One procedure involves modification indices and expected parameter change, while the other 
procedure is based on global tests and observed parameter change. 
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The second special issue with non-standard applications of SEM, presented at the 2012 meeting, will cover 
meta-analytical SEM, extensions of growth curve models, quadratic effects, exploratory factor analysis of multilevel 
discrete data, and ROC analysis. We think that these ten non-standard SEM papers, five papers in each of two 
issues of the Netherlands Journal of Psychology, together give a fine impression, not only of the state of the art of 
advanced SEM,  but also of the variety of substantive research questions that can benefit from a SEM approach.

Suzanne Jak 
Annemarie Zand Scholten 
Frans J. Oort
University of Amsterdam, Amsterdam, the Netherlands
E-mail: S.Jak@uva.nl
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In this paper we advocate the use of latent trait models to make inferences about psychological construct as 
measured by psychological tests and questionnaires. Latent trait models have the advantage that measurement 
error is isolated, that items are weighted according to how well they measure the construct, and that explicit tests 
concerning the underlying construct are feasible. However, latent trait models come with the requirement of 
distributional assumptions concerning the item scores. We show in this paper that these assumptions may conflict 
with specific psychological phenomena. We discuss a substantively motivated latent trait model that can 
accommodate these phenomena.

Where: Netherlands Journal of Psychology, Volume 67, 48-57

Substantively motivated  
extensions of the traditional  
latent trait model

In psychology, the dominant approach to measuring 
psychological constructs is by means of tests and 
questionnaires. Psychological tests are administered 
to measure cognitive abilities such as working 
memory, arithmetic ability, and general knowledge, 
while psychological questionnaires are administered 
to measure personality traits or mood and affect. 
Tests and questionnaires differ importantly in the 
nature of their items. A typical test consists of a 
number of tasks that need to be completed. For 
instance, in the subtest Picture Completion of 
the Wechsler Adult Intelligence Scale (Wechsler, 
1997), a set of pictures displaying an event (e.g., a 
carpenter building a house) need to be placed in the 
correct chronological order. Or, in the ‘Intelligenz 
Struktur Test’ (IST; Amthauer, Brocke, Liepmann, 
& Beauducel, 2001), the subtest Arithmetic 
involves traditional arithmetic problems that need 
to be solved. On the contrary, a questionnaire item 
typically involves a statement about one’s behaviour, 
attitudes, and/or feelings. The respondent indicates 
on a fixed scale the extent to which the statement 
applies to him or her. For instance, the Bermond-
Vorst Alexitymia Questionnaire (Vorst & Bermond, 
2001) includes items such as ‘If I see someone 

cry, I start feeling sad’ and ‘If something totally 
unexpected happens, I stay calm and unaffected’. 
Or, in the Positive Affect and Negative Affect scale 
(Guadagnoli & Mor, 1989) the items are words that 
describe a particular affect (e.g., desperate, or happy) 
to which the respondents need to report how much 
they experienced the affect during past week.

Administration of a test or questionnaire to a sample 
of respondents results in observed item scores, 
which are regarded as measures of the underlying 
psychological construct (Borsboom, 2008). This 
means that we have multiple measures of the same 
construct available, as we have multiple items. 
However, these multiple measures should be 
combined into a single score to enable inferences 
about the construct. In practice, researchers often 
rely on taking the sum or average of the item 
scores and use this sum score as the construct 
score (Borsboom, 2006). However, this approach 
is suboptimal as 1) all items are weighted equally, 
while some items can be a better measure of the 
construct than others; 2) all items are assumed to 
be a perfectly reliable measure of the construct as 
measurement error is not extracted from the item; 
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3) it is not tested whether it is justified to add the 
item scores, i.e., it is not checked whether the test or 
questionnaire truly measures a single construct (and 
not two or three); 4) the sum score is instrument-
dependent, i.e., it cannot easily be compared with 
other sum scores obtained using a different test or 
questionnaire that measures the same construct; 
5) the sum score is sample-dependent, e.g., a 
respondent can have the highest extraversion score 
in one sample, while in another sample, the same 
respondent scores relatively low.

A more rigorous alternative to obtain a score on 
the psychological construct is to use latent trait 
models (Mellenbergh, 1994). In these statistical 
models, the psychological construct is represented 
by an unobserved or latent trait and the items of 
the test or questionnaire are indicators of this trait.  
By doing so, one can easily estimate the scores of 
the respondents on the latent trait using software 
such as Mplus (Muthén & Muthén, 2007), LISREL 
(Jöreskog, & Sörbom , 1993), Amos (Arbuckle, 
1997), and OpenMX (Boker et al., 2010). This latent 
trait score can then be regarded as the psychological 
construct score. Advantages are that 1) items are 
weighted according to how well they measure the 
construct; 2) measurement error is taken into account 
in the item scores; 3) it can be tested whether a single 
construct is measured by the test or questionnaire; 
4) the latent trait does not in principle depend on 
the exact items that are used; and 5) the latent trait 
is not in principle sample-dependent. Despite these 
advantages, there are a number of challenges to the 

latent trait model: 1) large sample sizes are necessary 
to enable estimation of the latent trait; and 2) latent 
trait models can get so complex that it is numerically 
difficult to apply the appropriate model (e.g., for data 
from multidimensional intelligence tests); and 3) 
commonly, a multivariate normal distribution for the 
observed data needs to be imposed, which results in 
assumptions that are not necessarily psychologically 
meaningful2.  

The first challenge, the large sample size 
requirement, is an important reason why most 
researchers prefer working with ANOVA-based 
methods that require only a handful of respondents 
(Borsboom, 2006). Indeed, the large sample size 
requirement is a drawback; however, due to the 
upcoming facilities of online data archiving, more 
and more data are becoming available, hopefully 
benefitting the use of latent trait models. In addition, 
due to advances in computer technology, the 
numerical challenge to the latent trait model is also 
becoming progressively less problematic. This paper 
focuses on the third disadvantage concerning the 
assumptions in the latent trait that are not necessarily 
psychologically meaningful. Specifically, in this 
paper we show how the traditional latent trait model 
includes assumptions that are not necessarily in line 
with specific hypotheses from the psychological 
literature. We argue that, to test these hypotheses, 
these assumptions need to be relaxed. The outline 
is as follows: First we conceptually present the 
traditional latent trait model including its parameters. 
Then, we present three substantive hypotheses 
from the literature that predict specific violations 
of the assumptions of the latent trait model. These 
are: ability differentiation, schematicity, and 
gene-by-environment interactions. Next, we show 
conceptually how these hypotheses can be included 
in the traditional latent trait model to arrive at a 
substantively motivated latent trait model. Finally, 
we discuss some challenging aspects of the present 
approach.

Latent trait models in psychology

A common way to visualise a latent trait model is 
illustrated in Figure 1. In the figure, the latent trait is 
the psychological construct ‘extraversion’ and it is 
measured by four items. These items could include 
for instance:
	 At parties, I like to talk with people I don’t know,
and
	 Talking to people gives me energy.

1 A latent trait can also be referred to as a latent variable. 
2  Strictly, multivariate normality is imposed on data that are (approximately) continuous (see below). For ordinal data, it is 
assumed that the data arose from categorisation of an underlying multivariate normally distributed variable. Thus, in case of 
ordinal data, the normal distribution for the data is also imposed but in a slightly different manner.

Figure 1 Example of a latent trait model for the psychological construct ‘extraversion’
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The latent trait is visualised by a circle to indicate 
that the trait is unobserved. The items are visualised 
as squares to indicate that these scores are observed. 
From the latent extraversion trait, arrows go down 
to each of the items indicating that the position 
on the latent trait of a given respondent will result 
in a specific expected score on each of the items. 

The degree to which variation in the latent trait is 
captured by the item is quantified by a parameter 
called factor loadings (Figure 2). The higher a factor 
loading, the better an item is at measuring the latent 
trait. In addition to the extraversion latent trait that 
is common to all items, each item is associated 
with a unique latent trait. These are the residuals 
that contain the measurement error of the item.3 
The strength of the influence of the residuals on the 
items is quantified by the parameter called residual 
variances. The higher a residual variance, the more 
‘noisily’ the item is measuring the latent trait. In 
addition to the factor loadings and the residual 
variances, the items are characterised by an intercept 
(not depicted), which reflects the mean of the item 
when applied to a single group of respondents, or 
the baseline level when applied to multi groups (e.g., 
males and females, or experimental conditions). 
Furthermore, the amount in which respondents 
differ on the latent trait is quantified by the factor 
variance (not depicted), which is simply the variance 
of the latent trait scores. In case of the extraversion 
example, a large factor variance suggests that there 
are large individual differences on extraversion in 
the population. When the factor variance equals 
0, the population is homogenous with respect to 
extraversion, i.e., all subjects in the sample have the 
same level of extraversion. 

Different kinds of latent trait 
models

The model in Figure 1 is general in that it can handle 
different kinds of data. By specifying the structure 
of the item and the latent trait scales, different 
latent trait models arise that go by different names 
in the literature, see Table 1. As can be seen in the 
table, the nature of the items can be categorical 
or continuous. Categorical item scales include 
items with either 2 or more unordered categories, 
e.g., ‘male/female’, or items with 2 to 6 ordered 
categories, e.g., Likert answer scales or item scores 
that are scored correct (1) and false (0). Continuous 
item scales include items that require responses to 
a continuous line segment (see Samejima, 1973; 
Mellenbergh, 2012) or response times. In addition, 
ordered categorical items with at least 7 categories 
can also be considered continuous (see Dolan, 1994). 

Like the scale of items, latent trait scales can also be 
continuous or categorical. Examples of continuous 
latent traits in psychology include working memory, 
depression, verbal comprehension, and neuroticism. 
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Item scale	 Latent trait scale	 Caregivers

Categorical	 Categorical	 Continuous 
	 Latent Class Model	 Item Response Model 
	 (Goodman, 1974; 	 (Rasch, 1960; Birnbaum, 1968;
	 McCutcheon, 1987)	 Lord, 1952)
	
Continuous	 Latent Profile Model	 Linear Factor Model
	 (Gibson, 1959; 	 (Spearman, 1904; Lawley & 
	 Lazarsfeld & Henry, 1968)	 Maxwell, 1963; Mellenbergh, 1994)

Table 1 Overview of the different types of latent trait models

Figure 2 Illustration of how factor loadings account for the degree to which variability in the 
latent trait is captured by the item scores (in case of –approximately– continuous item scores)

3 Technically, the residuals contain both a random component (measurement error) and a systematic 
component (due to unmodelled latent variables; Bollen, 1989). Here we assume that the model in Figure 1 is 
the true model, i.e., there is no systematic component in the residuals.



Examples of categorical latent traits include 
attachment style (‘secure’, ‘avoidant’, or ‘anxious’) 
and Piagetian stage of development (‘sensorimotor 
stage’, ‘preoperational stage’, ‘concrete operational 
stage’, and ‘formal operational stage’). As can be 
seen from the table, four basic models arise: the 
Latent Class Model, the Item Response Model, the 
Latent Profile Model, and the Linear Factor Model. 
To name just a few applications in psychology: the 
Latent Class Model has been used to infer what 
cognitive strategies children use in solving arithmetic 
problems (Jansen & Van der Maas, 2002), the Item 
Response Model has been used to study liability to 
substance use disorders (Vanyukov, 2003) and to 
identify type D-personality (which is associated with 

increased cardiovascular disease; Emons, Meijer, 
& Denollet, 2006), the Latent Profile Model has 
been used to study eating disorders (Wade, Crosby, 
& Martin, 2006), and the Linear Factor Model has 
been used to study group differences in intelligence 
(Dolan, 2000) and personality (Smits, Dolan, Vorst, 
Wicherts, & Timmerman, 2011).

Assumptions

As the focus of this paper is on the analysis of 
psychological tests and questionnaires, the remainder 
of this paper will be on Item Response Models 
and Linear Factor Models (see Table 1). The 
most popular method that is used to apply these 
models to data (i.e., maximum likelihood; Lawley, 
1943) requires a normal distribution for the item 
scores.4 Note that some estimation procedures 
such as the asymptotic distribution free method 
for approximately continuous data (Browne, 1984) 
and non-parametric methods for ordinal data (e.g., 
Mokken, 1971) do not require a normal distribution. 
However, such methods are not suitable to explicitly 
model psychological hypotheses like those we are 
considering in this paper. 

As pointed out in Molenaar, Dolan, and Verhelst 
(2010) for approximate continuous items, and in 
Molenaar, Dolan, & De Boeck (2012) for ordered 
categorical items, the assumption of a multivariate 
normal distribution implies three characteristics of 
the model in Figure 1. First, the latent trait scores 
should be normally distributed (Figure 3a), as 
opposed to a non-normal distribution (Figure 3b). 
Second, the factor loadings should not depend on 
the level of the latent trait (Figure 4a). That is, the 
factor loadings should be equal for every respondent 
irrespective of his or her position on the latent trait. 
If the factor loadings do depend on the level of the 
latent trait, as depicted in Figure 4b, the assumption 
of a normal distribution for the items will be 
violated. See Figure 5 for an illustration. Third, 
similarly, the residual variances should not depend 
on the level of latent trait, see Figure 6a. This notion 
is called homoscedasticity of the residual variances. 
If the residual variances depend on the level of the 
latent trait, as depicted in Figure 6b, this is referred 
to as heteroscedasticity of the residual variances. 
Note that the residuals should also be normally 
distributed. This is not the same as the assumption 
of normal data, as the distribution of the data also 
depends on the distribution of the latent trait (as 
discussed above).
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4  Note again from footnote 2 that for ordinal data, the normality assumption is also imposed but in a different 
manner. 

Figure 3. A) The assumption of a normal distribution for the latent trait; B) a violation of this 
assumption

Figure 4. A) The assumption of level independent factor loadings; B) a violation of this 
assumption, the factor loadings are larger for increasing levels of the latent trait



These three characteristics of the latent trait model, 
normality of the latent trait, level independency of 
the factor loadings, and homoscedasticity of the 
residual variances, result in a normal distribution for 
the item scores. If one of these characteristics does 
not hold for a given dataset, e.g., the factor loadings 
are level dependent, the distribution of the items 
will not follow a normal distribution. Thus, all three 
characteristics should hold for a given dataset to 
enable application of latent traits models. 

Substantive hypothesis in  
psychology that implies  
non-normality
A normal distribution for the item scores is a 
reasonable approximation in many applications in 
psychology. However, in the psychological literature, 
there are substantive hypotheses that predict specific 
departures from normality of the item scores. Thus, 
these hypotheses give a substantive reason why a 
normal distribution could not be assumed. Below 
we discuss three of these psychological phenomena, 
ability differentiation, schematicity, and gene-by-
environment interactions (see Molenaar, et al., 
2012).

Ability differentiation
In the intelligence literature, positive manifold 
refers to the well-replicated phenomenon that all 
subtests of a given IQ test (e.g., the WAIS-III; 
Wechsler, 1997) are all positively inter-correlated 
notwithstanding the fact that they all concern 
different cognitive abilities (such as working 
memory, perceptual speed, etc). This phenomenon 
was explained by Spearman (1904) by postulating 
that a single common factor underlies all subtest 
scores. He referred to this factor as the general 
intelligence factor, or g. Although the notion of a 
single common factor appeared to be untenable, g 
remains the most dominant dimension of individual 
differences in intelligence test scores as a single 
higher-order factor. In 1927, Spearman discovered 
that correlations between intelligence subtests were 
generally higher among a sample of ‘mentally 
defective’ children (average correlation: .782) 
as compared with a sample of ‘normal’ children 
(average correlation: .466).5 This observation led 
Spearman to formulate the hypothesis that is now 
called ‘the ability differentiation hypothesis’, i.e., 
the g factor is not an equally strong source of 
individual differences across its range. Specifically, 
the g factor is stronger in people in the low end of 
the g distribution (e.g., the ‘defective’ children) 
as compared with people in the high end of the g 
distribution (e.g., the ‘normal’ children). As pointed 
out by Tucker-Drob (2009), Reynolds and Keith 
(2007), and Molenaar, Dolan, Wicherts, and Van 
der Maas (2010), a stronger g factor at the lower 
g-range implies 1) non-normality of g; 2) larger 
factor loadings for people low on g; and/or 3) 
smaller residual variances for people low on g. That 
is, ability differentiation implies at least one (and 
possibly more) of the violations that are depicted in 
Figure 3b, 4b and 6b. 
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Figure 5. Illustration of how level dependent factor loadings will result in a non-normal 
distribution of the item scores (in case of –approximately– continuous item scores)

Figure 6. A) The assumption of homoscedastic residuals; B) a violation of this assumption, the 
residuals are heteroscedastic, i.e., they increase across the latent trait

5  The terms ‘defective’ and ‘normal’ are from Spearman (1924)
6 and measurement error



Schematicity
Psychological questionnaires differ from 
psychological tests in that the former concern an 
evaluation of the self (in personality research) or an 
object (organisational and educational psychology) 
while the latter involve some kind of problem 
solving. In case of self-evaluations, this difference 
makes psychological questionnaires relatively 
vulnerable to ‘systematic noise factors’ because 
evaluations of the self may be distorted due to 
social desirability or an inaccurate self image. With 
respect to the latter, researchers formulated the 
schematicity hypothesis. This hypothesis predicts 
that people differ in the accuracy with which they 
rate themselves on personality characteristics 
because of differences in their cognitive structures 
that are concerned with processing information about 
the self (Markus, 1977; Rogers, Kuiper & Kirker, 
1977; Tellegen, 1988). Research indicated that high 
schematicity (i.e., having strong cognitive structures 
about the self) is associated with an extreme 
position on the construct (Markus, 1977). A possible 
explanation for this phenomenon could be that 
personality dimensions do not apply equally well to 
everybody (Allport, 1937; and Baumeister & Tice, 
1988). This implies that toward the extreme of a 
personality dimension, less individual differences are 
present. This causes non-normality of the personality 
dimension as in Figure 3b, lower factor loadings 
on the extreme of the personality dimension as in 
Figure 4b, and/or larger residual variances towards 
the extreme of the personality dimension as in Figure 
6b. That is, like ability differentiation, schematicity 
implies violation of the normality assumption in the 
traditional latent trait model. 

Genotype-by-environment interaction
Psychological constructs are often found to be 
heritable, i.e., individual differences on for instance 
working memory can be explained to some degree 
by individual differences in genes. The remaining 
unexplained part is accounted for by environmental 
effects. The effect of both genes and environment is 
commonly studied within the classical twin design 
(e.g., Martin & Eaves, 1977; Eaves, Last, Martin, 
& Jinks, 1977). In this design, twins are tested on a 
(psychological) trait of interest. In the most simple 
version of the design, only monozygotic twins are 
considered, e.g., twins that share 100% of their 
genes. In this case, the similarities one observes 
between the two members of a twin on, for instance, 
a measure of verbal comprehension are due to genes. 
In addition, the differences one observes between 
twins are due to environmental effects.  This instance 
of the twin design can be specified as a latent trait 
model (see Figure 7). As can be seen in the figure, 
the genetic effects are operationalised as the common 
latent trait underlying the scores of two members 
of a twin (comparable to the extraversion latent 
trait from Figure 1). The environmental effects are 
operationalised as the residual variances, i.e., the item 
specific effects. Within the twin design in Figure 7, 
factor loadings and residual variances are equal for 
the two items, as both items are from the same twin. 
Now −given standardisation of the item scores− the 
squared factor loading will equal the heritability of 
the measures in Figure 7 (assuming of course that 
the model is correctly specified). Thus, the squared 
factor loading represents the proportion of variance in 
the item that is due to genes. In addition, the residual 
variance will equal the proportion of variance that is 
due to the environment (i.e., one minus heritability). 

In the standard model in Figure 7, the effects of 
genes and environment are additive, i.e., they 
do not interact (see Eaves, et al., 1977). It is, 
however, possible that sensitivity to environmental 
influences depends on genes, or vice versa. For 
instance, Turkheimer, Haley, Waldorn, D’Onofrio, 
and Gottesman (2003) found that genes are 
more expressed in measures of cognitive ability 
in environments of high SES as compared with 
environments low in SES. This is indicative of 
genotype-by-environment interaction, i.e., the effect 
of the environment depends on the specific genetic 
makeup of a sample of subjects. In the classical 
twin design in Figure 7, a genotype-by-environment 
interaction will be apparent if the effect of the 
environment (i.e., the residual variances) increases 
or decreases across the genetic factor. That is, a 
genotype-by-environment interaction will arise as 
heteroscedastic residuals similarly to in Figure 6b. 
Thus, genotype-by-environment interaction is again 
a phenomenon that is not in line with the standard 
assumption of normality in the latent trait model. 
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Figure 7. The classical twin design as a latent trait model. Note that this model is for 
monozygotic twins only



The substantively motivated 
extended latent trait model

As argued above, some hypotheses in psychology 
predict specific violations of the normality 
assumption of the standard latent trait model. 
Therefore, extensions of the standard latent trait 
model from Figure 1 are needed to accommodate 
these hypotheses into the model. Specifically, as 
discussed above, the model needs to be extended 
so that it incorporates non-normality in the latent 
trait, level dependency in the factor loadings, and 
heteroscedasticity in the residual variances. We 
discuss these extensions below.

First, as illustrated by Azevedo, Bolfarine, and 
Andrade (2011), Verhelst (2008) and Molenaar et 
al. (2010), the distribution of the latent trait can 
be submitted to a so-called skew-normal density 
(Azzalini, 1985; 1986; Azzalini & Capatanio, 
1999). This is a more flexible alternative to the 
normal distribution, as it can take a skewed shape. 

The skew-normal density introduces an additional 
parameter in the model, the shape parameter. This 
parameter quantifies the degree of skewness in the 
distribution of the latent trait. When the parameter is 
zero, the distribution of the latent trait is normal.

Second, Molenaar et al. (2010) showed that level 
dependent factor loadings as in Figure 4b result in 
non-linear factor loadings. This result is useful as 
there is a large body of literature on non-linear factor 
models (e.g., McDonald, 1965; Kenny & Judd, 
1984; Klein & Moosbrugger, 2000; Bauer, 2005). 
Thus, these models can readily be used to model 
violations of normality. This introduces an additional 
parameter in the model, the non-linearity parameter. 
This parameter quantifies the degree to which the 
factor loadings depend on the level of the latent trait. 
For instance, for large values of this parameter, the 
factor loadings are highly different for people who 
are in the high regions of the latent trait distribution 
compared with those who are in the low region. 
When the parameter is zero, the factor loadings do 
not differ across the latent trait.

Third, Hessen and Dolan (2009) and Molenaar et 
al. (2010) propose factor models that incorporate 
heteroscedastic residuals. Specifically, the residual 
variance from Figure 1 is made an exponential 
function of the score on the latent trait. By doing 
so, an additional parameter arises in the model, 
the heteroscedasticity parameter. This parameter 
quantifies the degree of heteroscedasticity in the 
data. When the parameter is large, residual variances 
are clearly different for people who differ on the 
latent trait. In addition, when the parameter is zero, 
the residual variances are homoscedastic.

All three effects can be introduced into the latent 
trait model in Figure 1.7 See Table 2 for an overview 
of the parameters of the resulting model. As can be 
seen, the model consists of the parameters from the 
traditional model and the new parameters that are 
discussed above. As this extended model does not 
assume normality of the item scores, it can be used 
to model the substantive psychological phenomena 
that are discussed in this paper. For instance, from 
applications of the extended model, it has become 
clear that ability differentiation is mainly due to 
non-linear factor loadings (Tucker-Drob, 2009) and 
a non-normal g factor (Molenaar, Dolan, & Van 
der Maas, 2011). In addition, using Item Response 
Theory, a systematic effect of schematicity was found 
in a dataset on alexythimia (Molenaar et al., 2012), 
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7 Note that some effects can be combined (non-linear factor loadings with heteroscedastic residuals, and a 
skew-normal distribution for the latent trait with heteroscedastic residuals), and some of them cannot be 
combined (a skew-normal distribution for the latent trait with non-linear factor loadings), see Molenaar et al. 
(2010).

Parameter

Factor variance

Factor loading

Residual variance
Intercept

Shape parameter

Non-linearity parameter

Heteroscedasticity
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Interpretation

Amount of individual differences on the 
psychological construct (e.g., extraversion)

Degree to which a given item measures the
psychological construct

Amount of noise on measure of the construct
In single group applications: The mean of 
the item. In multiple group applications: The 
baseline level for group comparison

Degree of skewness in the latent trait 
distribution. When zero, the latent trait is 
normally distributed.

Degree of level dependency in the factor
loadings. The larger this parameter, the more 
the factor loadings differ across the latent trait. 
When zero, the factor loadings are the same for 
everyone

Degree of heteroscedasticity in the residual
variances. The larger this parameter, the more 
the residual variances differ across the latent 
trait. When zero, the residual variances are 
homoscedastic 

Table 2 Overview of all parameters in the extended model



and a gene-by-environment interaction was found 
on cognitive ability (the effect of the environment 
increased with the genetic factor; Molenaar, Van der 
Sluis, Boomsma, & Dolan, in press). 

Discussion

As all the hypotheses discussed in this paper predict 
non-normality of the item scores, one should 
be careful in drawing conclusions concerning 
the existence of phenomena such as ability 
differentiation and schematicity. Non-normality can 
have different causes that are not necessarily in line 
with the hypothesis under consideration. Below we 
discuss three of them: poor scaling, censoring, and 
unrepresentative samples. 

First, poor scaling results from adding individual 
items that differ disproportionately in how difficult 
they are (e.g., adding item scores of 20 easy 
items and five difficult items), and from Likert 
scales in which one or more of the categories are 
disproportionately little used (e.g., a five-point 
scale in which nobody uses the middle category). 
We use the term poor scaling only within a 
measurement context in which a test or questionnaire 
is administered to assess a given psychological 
construct. In case of a classification context in which 
individuals are assigned to certain categories (e.g., 
depressed or not-depressed), item difficulties are 
commonly distributed around the cutoff point (see 
Hambleton, Swaminathan, & Rogers (1990; Chapter 
7). In the Linear Factor Model (see Table 1), poor 
scaling can result in heteroscedastic residuals (Van 
der Sluis, Dolan, Neale, Boomsma, & Posthuma, 
2006). It is therefore important to check for poor 
scaling in the data before testing the schematicity 
hypothesis for instance to avoid spurious effects. 
Items that show poor scaling should be omitted from 
the analysis, or the analyses should be done using 
Item Response Models. In these models, poor scaling 
is not a problem as each answer category of an item 
is modelled separately. 

Another alternative source of non-normality is 
censoring. Censoring occurs when the majority of a 
sample obtains the highest or lowest possible score 
for a Likert scale item, or a sum score. This is also 
referred to as a ceiling or floor effect, respectively. 
When Likert scales are analysed as continuous using 
the Linear Factor Model, censoring of the item 
scores can result in heteroscedastic residuals (Van 
der Sluis et al., 2006). Again this is problematic as 
this heteroscedasticity might wrongfully be taken 
as evidence for a gene-by-environment interaction, 
for instance. As with poor scaling, it is thus wise to 
first check the items in the analyses for possible floor 
and/or ceiling effects. Items that show censoring 
could be omitted from the analyses, or the analyses 
can be conducted using Item Response Model. As 
with poor scaling, censoring is not a problem in 
these models as each answer category of an item is 
modelled separately.

Third, unrepresentative samples can bias conclusion 
concerning non-normality. For instance, in a study in 
which an intelligence test is administered to a sample 
of subjects, less bright people could be less willing 
to participate in the study as they know they will do 
badly. This causes a skewed intelligence distribution 
in the sample that might wrongfully be interpreted 
in terms of ability differentiation. Therefore, it is of 
importance that the data are not subject to sampling 
bias. The problem of unrepresentative samples might 
be the most difficult problem of the ones discussed 
above, as no clear post hoc solution exists. There are 
some statistical possibilities, e.g., the subjects in the 
sample could be weighted on important background 
variables. However, appropriate procedures are not 
yet available within the model as discussed in this 
paper. This could be interesting work for future 
research.
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Assessment of change in patient-reported outcomes may be invalidated by the occurrence of response shift. 
Response shift refers to a change in a respondent’s internal standards that may cause changes in observed 
variables that are not directly related to change in the construct of interest. An established approach for detecting 
response shift in the area of health-related quality of life (HRQL) is to administer a retrospective pre-test 
(then-test). In this study, the then-test was incorporated in the structural equation modelling (SEM) approach to (1) 
compare the then-test approach and the SEM approach in their decomposition of observed change and (2) to test 
the underlying assumptions of the then-test approach. In an application to HRQL data of 170 cancer patients 
undergoing invasive surgery, we found that both approaches revealed a similar pattern of decomposition, although 
there were some differences in the size and direction of change. With regard to the underlying assumptions of the 
then-test approach, results showed: (1) no evidence for recall-bias (Recall Assumption supported for all scales), (2) 
that internal standards of measurement were not invariant across post- and then-test measures (Consistency 
Assumption rejected for four out of nine scales), and (3) that internal standards were not only affected by the 
recalibration type of response shift (Recalibration Assumption rejected for three out of nine scales). Valid approaches 
for detecting response shift and the consequences assessing changes in HRQL should be further investigated. 

Where: Netherlands Journal of Psychology, Volume 67, 58-67

Response shift detection through 
then-test and structural equation 
modelling: Decomposing observed 
change and testing tacit assumptions

Patient-reported outcomes of health-related quality 
of life (HRQL) are becoming increasingly more 
important in evaluating treatment effects in clinical 
settings. However, there is a well-known disparity 
between patient-reported and clinical measures 
of function. One explanation for this disparity is 
related to the dynamic nature of the HRQL construct 
(Allison, Locker, & Feine, 1997). The dynamic 
nature of the construct entails that the standards 
by which individuals assess their HRQL can differ 
between subjects and can change within subjects 
over time. Such a change in standards (or frame of 
reference) may cause changes in observed variables 
that are not directly related to change in the construct 
of interest. It is therefore important to detect possible 
changes in respondent’s internal standards.  
Change in internal standards is also referred to 

as ‘response shift’. The term response shift was 
first used in research on educational training 
interventions (Howard et al., 1979) and was also 
investigated in the field of organisational change 
where they used the terminology of  ‘alpha’, 
‘beta’ and ‘gamma’ change (Golembiewski et al, 
1976). In the area of HRQL research, Schwartz 
& Sprangers (1999) proposed a theoretical model 
of response shift that distinguishes three types of 
response shift: (1) recalibration, which refers to a 
change in the respondent’s internal standards of 
measurement, (2) reprioritisation, that refers to a 
change in respondent’s values regarding the relative 
importance of component domains of the target 
construct, and (3) reconceptualisation, referring to a 
change in definition of the target construct. Response 
shift causes comparison of measurements over time 
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to be incomparable. Therefore, when investigating 
changes in HRQL, it is important to also investigate 
– and account for – response shift effects.  

Several methodological approaches are available 
to investigate response shift in longitudinal HRQL 
research (Schwartz & Sprangers, 1999; Schwartz 
et al., 2011). The ‘then-test’ approach is most 
commonly used, and includes a retrospective pre-
test measure in addition to the usual pre and post 
measures. This retrospective pre-test is administered 
on the post-test occasion and asks respondents to 
re-evaluate their HRQL at the time of pre-test. As 
the then-test and post-test are administered at the 
same time, it is assumed that both measurements 
are completed with the same internal standard, 
thus avoiding response shift effects. Comparison 
of the post-test and then-test scores would yield an 
unbiased indication of the treatment effect (‘true 
change’, see Table 1). Furthermore, differences 
between the then-test and pre-test scores could 
be used as an assessment of changes in subjects’ 
internal standards (response shift). The then-test 
approach thus allows a decomposition of observed 
change (differences between pre-test and post-
test scores) into true change and response shift. 
However, these interpretations are only valid when 
the following assumptions are met: 

1)	 Recall Assumption: At then-test occasion 
respondents are able to recall their state at pre-
test. The validity of the then-test depends on the 
underlying assumption that memory (the recall 
of the pre-test state) is accurate and alternative 
cognitive explanations (e.g. social desirability, 
cognitive dissonance, implicit theory of change, 
expectancy or experimenter effects) do not play 
a role.

2)	 Consistency Assumption: Post- and then-test are 
completed with the same internal standard. A 
valid comparison of then-test and post-test scores 
depends on the underlying assumption that the 
respondent’s internal standards of measurement 
are invariant across these assessments. 

3)	 Recalibration Assumption: All response shift 
is of the recalibration type. As the then-test 
approach aims to assess only recalibration – not 
reprioritisation and reconceptualisation – the 
comparison of then-test and pre-test scores in 
assessing response shift is only accurate if all 
response shift is of the recalibration type.

An alternative method to detecting response shift is 
the structural equation modelling (SEM) approach 
(Oort, 2005). Similar to the then-test approach, 
the SEM approach provides a way to decompose 
observed change into true change and response 
shift (Oort, 2005, p. 495), based on the estimates 
of the factor model parameters (Table 1). An 
advantage of the SEM approach is that it allows for 
the statistical comparison of separate components 
of the measurement model over time, enabling 
operationalisation of the different types of response 
shift.  

The SEM approach can therefore be used not only 
as a technique for the detection of response shift, but 
also for a substantive analysis of the decomposition 
of change. Moreover, the characteristics of the SEM 
approach provide a unique opportunity to test the 
underlying assumptions of the then-test approach. 
Incorporating the then-test into the SEM approach 
allows for testing the validity (and consistency) 
of the measurement model for post- and then-test 
(Consistency Assumption) and assessing not only the 
occurrence of recalibration, but also reprioritisation 
and reconceptualisation (Recalibration Assumption). 
Moreover, recall bias can be investigated by 
examining effects on the underlying constructs 
instead of the observed variables (Recall 
Assumption).

Therefore, the aim of this study is to illustrate 
how incorporation of the then-test into the SEM 
approach enables: 1) a substantive comparison of 
both approaches in their decomposition of observed 
change into true change and (types of) response 
shift, and 2) testing the underlying assumptions of 
the then-test approach.

Method

Cancer patients’ health-related quality of life was 
assessed prior to surgery (pre-test) and three months 
following surgery (post-test and then-test). These 
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Then-test approach	
Observed change	=	True change	 +	 Recalibration 
( Xpost – Xpre )	 =	(Xpost – Xthen)	 +	 (Xthen– Xpre)

SEM approach
Observed change	=	True change	 +	 Recalibration	 +	 Reprioritisation &

Reconceptualisation 
( μpost – μpre )	 =	Λpre * αpost 	 +	 (τpost  – τpre) 	 +	 (Λpost –	Λpre) * αpost

In the then-test approach scores for the different measurements are 
denoted with ‘X’ to reflect the observed nature of the scores. In the SEM 
approach Greek symbols reflect the parameter estimates of observed factor 
means (μ), factor loadings (Λ), common factor means (α) and intercepts (τ)

Table 1	Decomposition of observed change according to the then-test approach 		
	 and the SEM approach



data have been used before to investigate response 
shift with the then-test and the SEM approach 
(Visser, Oort & Sprangers, 2005). 

Patients
A consecutive series of 170 newly diagnosed 
cancer patients were enrolled, including 
29 lung cancer patients undergoing either 
lobectomy or pneumectomy, 43 pancreatic 
cancer patients undergoing pylorus-preserving 
pancreaticoduodenectomy, 46 oesophageal cancer 
patients undergoing either transhiatal or transthoracic 
resection and 52 cervical cancer patients undergoing 
hysterectomy. Exclusion criteria were being under 
the age of 18, having a life expectancy less than 9 
months, or not being able to complete a (Dutch) 
questionnaire. The sample consisted of 87 men and 
83 women, with ages ranging from 27 to 83 (mean 
57.5, standard deviation 14.1). 

Measures
Generic health-related quality of life was assessed 
with the Dutch language version (Aaronson et al., 
1998) of the SF-36 health survey (Ware, Snow, 
Kosinski, & Gandek, 1993), encompassing eight 
scales: physical functioning (PF), role limitations 
due to physical health (role-physical, RP), bodily 
pain (BP), general health perceptions (GH), vitality 
(VT), social functioning (SF), role limitations due 
to emotional problems (role-emotional, RE), and 
mental health (MH). Fatigue (FT) was measured 
with a six-item short form of the multidimensional 
fatigue inventory (MFI; Smets, Garssen, Bonke, & 
De Haes, 1995), to cover effects on patients’ fatigue 
more thoroughly. For computational convenience 
the original scale scores of the SF-36 scales and the 
short form of the MFI were transformed to scales 
ranging from 0 to 5, with higher scores indicating 
better health. There were no missing data, as 
completion of the self-administered questionnaires 
was checked by an interviewer.

Structural equation modelling
The SEM procedure (Oort, 2005) was applied to the 
data of pre-, post- and then-tests to detect response 
shift and includes: 1) establishing an appropriate 
measurement model, 2) fitting a model of no 
response shift, 3) detection of response shift, and 4) 
assessment of true change. The measurement model 
was established on the basis of published results of 
principal components analyses of the SF-36 (Ware 
et al., 1993), results of exploratory factor analyses 
of the present data, and substantive considerations. 
The measurement model has no across measurement 
constraints. To test for the occurrence of response 
shift the second step in the SEM procedure is to 
fit a model of no response shift (where all model 
parameters that are associated with response shift are 

constrained to be equal across measurements). To 
test the presence of response shift, the no response 
shift model is compared with the model with no 
across measurement constraints. The third step in 
the SEM procedure begins with the no response 
shift model and uses step-by-step modification 
to arrive at the response shift model where all 
apparent response shifts are accounted for. Response 
shift is operationalised as across-measurement 
differences between patterns of common factor 
loadings (reconceptualisation), values of common 
factor loadings (reprioritisation), differences 
between intercepts (uniform recalibration), and 
differences between residual variances (nonuniform 
recalibration). In the fourth step of the SEM 
procedure, true change is assessed in the model 
where response shift is accounted for. 

Structural equation models were fitted to the means, 
variances and covariances of the SF-36 and MFI 
scale scores of pre-, post- and then-test, using 
standard statistical computer programs (Jöreskog & 
Sorbom, 1996; Neale, Boker, Xie & Maes, 1999) 
(LISREL provides modification indices and Mx 
provides likelihood-based confidence intervals). 
To achieve identification of all model parameters, 
scales and origins of the common factors were 
established by fixing the factor means at zero and 
the factor variances at one. In Steps 2 and 3 of the 
procedure, factor means and variances are only fixed 
for first occasion (pre-test); post-test and then-test 
factor means and variances are then identified by 
constraining intercepts and factor loadings to be 
equal across assessments (Oort, 2005).

Goodness-of-fit was evaluated with the χ2 test of 
exact fit, where a significant χ2 indicates a significant 
difference between data and model. However, in 
the practice of structural equation modelling, exact 
fit is rare, and with large sample sizes the χ2 test 
generally turns out to be significant. An alternative 
measure of overall goodness-of-fit is the root mean 
square of approximation (RMSEA). According to 
a generally accepted rule of thumb, an RMSEA 
value below .08 indicates ‘reasonable’ fit and one 
below .05 ‘close’ fit (Browne & Cudeck, 1992). In 
addition, the comparative fit index (CFI; Bentler, 
1990) gives an indication of model fit based on 
model comparison (compared with the model with 
no across measurement constraints), where CFI 
of .97 or higher is indicative of good fit and CFI 
between .95 and .97 of acceptable fit. Yet another fit 
index is the expected cross validation index (ECVI; 
Browne & Cudeck, 1989) which is a measure of the 
discrepancy between the model-implied covariance 
matrix in the analysed sample (‘calibration’ sample), 
and the covariance matrix that would be expected 
in another sample of the same size (‘validation’ 
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sample). The ECVI can be used to compare different 
models for the same data, where the model with the 
smallest ECVI indicates the model with the best fit.

The χ2 difference test (Bollen, 1989) was used to 
compare the fit of nested models, where a significant 
χ2 indicates that the addition of model parameters 
significantly improves the model fit. Significant 
modification indices (Jöreskog & Sorbom, 1996) 
and standardised residuals > .10 were assumed to 
indicate response shift. The specification search was 
consistently guided by substantive consideration in 
order to retain a theoretical sensible model. Each 
modification was tested with the χ2 difference test 
(Bollen, 1989).

Objective 1: Decomposition of 
change 

The equations in Table 1 give the decomposition 
of observed change into true change and response 
shift for both the then-test approach and the SEM 
approach. For the then-test approach the standard 
deviations of the observed change scores are used 
to calculate standardised mean differences (as effect 
size indices d) for the components of observed 
change. For the SEM approach the parameter 
estimates of the final model (in which all response 
shift is accounted for) were used to calculate 
standardised mean differences (as effect size indices 
d) for the components of observed change (Oort, 
2005). Effect-size values of d = .2, .5 and .8 are 
considered ‘small’, ‘medium’, and ‘large’ (Cohen, 
1988). 

Objective 2: Testing the 
assumptions of the then-test 
approach
The Recall Assumption can be tested by testing 
the equality of pre-test and then-test common 
factor means because the common factor means of 
the response shift model should refer to the same 
state (of pre-test). The Recall Assumption would 
be supported when the equality constraint across 
pre- and then-test common factor means is tenable 
(indicated by the χ2 difference test). 

The Consistency Assumption can be tested by 
imposing equality constraints across post- and 
then-test factor loadings (reconceptualisation and 
reprioritisation), intercepts (uniform recalibration) 
and residual variances (nonuniform recalibration). 
When response shift detection (using the χ2 
difference test) is invariant across assessments, the 
Consistency Assumption is supported. 

The Recalibration Assumption can be tested by 
examining recalibration, reprioritisation and 
reconceptualisation types of response shift. When 
all response shifts detected (using the χ2 difference 
test) are of the recalibration type, the Recalibration 
Assumption is supported.

Results

Table 2 gives pre-, post- and then-test means and 
standard deviations for all SF-36 and MFI scales. 

Measurement model
Results from exploratory factor analyses and 
substantive considerations gave rise to the 
measurement model in Figure 1 (see Oort, Visser & 
Sprangers, 2005 for more information on selection 
of this measurement model). The circles represent 
unobserved, latent variables and the squares 
represent the observed variables. Three latent 
variables are the common factors general physical 
health (GenPhys), general mental health (GenMent), 
and general fitness (GenFitn). GenPhys is measured 
by PF, RP, BP and SF, GenMent is measured by MH, 
RE, and again SF, and GenFitn is measured by VT, 
GH, and FT. Other latent variables are the residual 
factors ResPF, ResRP, ResBP, etc. The residual 
factors represent all that is specific to PF, RP, BP, 
etc., plus random error variation. In addition, 
Figure 1 shows the measurement model of the model 
in which all response shift is accounted for (dotted 
lines represent factor loadings that were present at 
post- and/or then-test only). Numbers in Figure 1 are 
maximum likelihood estimates of common factor 
loadings, common factor correlations, residual 
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	 Pre-test		  Post-test		  Then-test

Scale	 Mean	 SD	 Mean 	 SD	 Mean	 SD

PF	 3.96 	 1.22	 3.18 	 1.32	 4.05	 1.37
RP	 2.73 	 2.09	 2.13 	 2.02	 2.99	 2.14
BP	 3.94 	 1.19	 3.68 	 1.21	 4.20	 1.27
SF	 3.81 	 1.32	 3.62 	 1.47	 3.72	 1.32
MH	 3.25 	 1.08	 3.69 	 1.05	 3.26	 1.14
RE	 3.00 	 2.12	 3.55 	 1.93	 2.84	 2.13
VT	 3.14 	 1.26	 2.77 	 1.23	 3.18	 1.32
GH	 2.96 	 0.95	 2.96 	 1.06	 2.76	 1.08
FT	 3.30 	 1.10	 2.92 	 1.18	 3.24 	 1.17

n = 170; SF-36 and MFI scale scores range from 0 to 5

Table 2	Means and standard deviations for SF-36 and MFI scales before surgery 
	 (pre-test) and three months after surgery (post-test and then-test)



variances, and three residual correlations (single 
values represent estimates that are constrained to 
be equal across pre-, post- and then-test, whereas 
multiple values represent separate estimates for 
pre-test (black), post-test (red), and then-test (blue)). 
Figure 2 gives a visual representation of the full 
longitudinal model that was fitted to the data. 

The measurement model of Figure 1 was the basis 
for a structural equation model for pre-, post and 
then-test with no across measurement constraints. 
The χ2 test of exact fit was significant (CHISQ(255) 

= 349.13, p<.001) but the RMSEA measure indicated 
close fit (RMSEA = .041, see Table 3). 

Detection of response shift
To test for the occurrence of response shift, all 
model parameters that are associated with response 
shift were held invariant across measurements. 
This means that all across measurement invariance 
constraints on factor loadings, intercepts, and 
residual variance were imposed. The fit of the no 
response shift model, although still satisfactory 
(RMSEA = .049, see Table 3), was significantly 
worse than the fit of model with no across 
measurement constraints (χ2 difference test: 
CHISQ(56) = 99.26, p < .001), indicating the 
presence of response shift. 

Inspection of modification indices and standardised 
residuals indicated which of the equality constraints 
were not tenable. Step by step modifications yielded 
the response shift model, which showed several 
cases of response shift, as will be explained below. 
The fit of the response shift model was good 
(RMSEA = .035, see Table 3), and significantly 
better than the fit of the no response shift model (χ2  
difference test: CHISQ(8) = 74.12, p < .001). All 
estimates of the response shift model parameters are 
given in Table 3.

Evaluation of response shifts and true change 
Reconceptualisation: A change in the pattern of 
factor loadings across assessments is indicative of 
reconceptualisation. Comparison of the common 
factor loadings of the pre-test with those of the post-
test and then-test (Table 4, top rows) showed that at 
both the post- and then-test GH became an indicator 
for GenMent, indicating reconceptualisation of GH. 
The VT scale became an indicator for GenPhys at 
the then-test, indicating reconceptualisation of VT at 
the then-test only. 

Reprioritisation: The values of the factor loadings 
contain information about reprioritisation. The 
common factor loading of SF on GenPhys became 
larger at the post-test, indicating reprioritisation of 
SF at the post-test only. 

Recalibration: Intercepts and residual variances 
contain information about uniform and nonuniform 
recalibration. For RP, we found differences between 
the pre- and post-test intercepts, indicating uniform 
recalibration of RP at the post-test only. For GH, 
we found differences between the pre- and then-test 
intercepts, indicating uniform recalibration of GH 
at the then-test only. For BP, we found differences 
between the pre-test and both the post- and then-test 
intercepts, indicating uniform calibration of BP that 
equally affects both the post- and then-test. We also 
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Figure 1 The measurement model used in response shift detection
Circles represent latent variables (common and residual factors) and squares represent observed 
variables (the SF-36 and MFI scales). Numbers are maximum likelihood estimates of the 
response shift model parameters: common factor loadings, common factor correlations, residual 
variances, and residual correlations. Single values represent estimates that were constrained to 
be equal across time, whereas multiple values represent different pre-test (black), post-test (red) 
and then-test (blue) estimates. 

Figure 2 The longitudinal structural equation model fitted to the data
Circles represent latent variables (common and residual factors) and squares represent observed 
variables (the SF-36 and MFI scales). Dotted lines represent factor-loadings unique for post- or 
then-test assessment.and then-test (blue) estimates. 



found a change in the variance of the residual factor 
ResVT, indicating nonuniform recalibration of VT 
that affects both the post- and then-test equally.

True change: Common factor means were fixed 
at zero for the pre-test (because of identification 
requirements), so that the post-test estimates serve as 
direct representations of true change. The differences 
between the pre- and post-test common factor means 
were significant (p < .001) for each of the common 
factors. GenPhys (-0.73) and GenFitn (-0.35) 
deteriorated, and GenMent (+0.51) improved, with 
effect sizes that can be considered ‘medium’  
(d = -.66, -.33, .55 respectively). 
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Model	 Description	 DF	 CHISQ	 RMSEA	 ECVI	 CFI

Model 1	 Measurement model	 255	 349.13	 .041	 3.39  	 .99
	 (no across			   (.026; .053)	 (3.14; 3.69)
	 measurement 				  
	 constraints)		

Model 2	 No response shift	 299	 448.39	 .049	 3.73	 .98
	 model			   (.037; .059)	 (3.28; 3.92)	

Model 3	 Response shift model	 291	 374.27	 .035	 3.43 	 .99
				    (.019; .048)	 (3.01; 3.58)	

n = 170; Numbers between parentheses represent 90% confidence intervals

	 Pre-test			   Post-test			   Then-test

	 GenPhys	 GenMent	 GenFitn	 GenPhys	 GenMent	 GenFitn	 GenPhys	 GenMent	 GenFitn

Factor
loadings (Λ)								      
PF	 0.97			   0.97			   0.97		
RP	 1.46			   1.46			   1.46		
BP	 0.73			   0.73			   0.73		
SF	 0.39	 0.59		  0.61	 0.59		  0.39	 0.59	
MH		  0.83			   0.83			   0.83	
RE		  1.33			   1.33			   1.33	
VT			   1.08			   1.08	 0.14		  1.08
GH			   0.49		  0.31	 0.49		  0.14	 0.49
FT			   1.03			   1.03			   1.03

Intercepts (τ)	 PF	 RP	 BP	 SF	 MH	 RE	 VT	 GH	 FT

Pre-test	 3.90	 2.74	 3.93	 3.75	 3.26	 2.91	 3.14	 2.96	 3.26
Post-test	 3.90	 3.18	 4.15	 3.75	 3.26	 2.91	 3.14	 2.96	 3.26
Then-test	 3.90	 2.74	 4.15	 3.75	 3.26	 2.91	 3.14	 2.76	 3.26

Residual 	 ResPF	 ResRP	 ResBP	 ResSF	 ResMH	 ResRE	 ResVT	 ResGH	 ResFT		
variance (Diag(Θ))	
Pre-test	 0.65	 1.74	 0.83	 0.93	 0.49	 2.39	 0.37	 0.66	 0.18
Post-test	 0.65	 1.74	 0.83	 0.93	 0.49	 2.39	 0.21	 0.66	 0.18
Then-test	 0.65	 1.74	 0.83	 0.93	 0.49	 2.39	 0.21	 0.66	 0.18

Residual 
correlations (Θ *)		  				  
Pre x Post	 0.28	 0.13	 0.35	 0.05	 0.43	 0.00	 0.27	 0.32	 0.15
Pre x Then	 0.62	 0.22	 0.42	 0.26	 0.54	 - 0.06	 0.26	 0.27	 -0.02
Post x Then	 0.41	 0.04	 0.19	 0.18	 0.58	 0.26	 0.26	 0.27	 0.22

Common factor 	 Pre-test			   Post-test			   Then-test
variances (Diag(Φ))						    
	 GenPhys	 GenMent	 GenFitn	 GenPhys	 GenMent	 GenFitn	 GenPhys	 GenMent	 GenFitn
	 1.00	 1.00	 1.00	 1.23	 0.86	 1.13	 1.33	 1.19	 1.08

Common factor 
correlations (Φ*)							     
Pre-test
Gen-Phys	 1								      
Gen-Ment	 0.36	 1							     
Gen-Fitn	 0.87	 0.61	 1						    
Post-test 
Gen-Phys	 0.55	 0.35	 0.53	 1					   
Gen-Ment	 0.38	 0.41	 0.43	 0.68	 1				  
Gen-Fitn	 0.47	 0.43	 0.59	 0.88	 0.74	 1			 
Then-test
Gen-Phys	 0.82	 0.37	 0.73	 0.41	 0.25	 0.32	 1		
Gen-Ment	 0.40	 0.59	 0.45	 0.20	 0.32	 0.18	 0.50	 1	
Gen-Fitn	 0.76	 0.50	 0.83	 0.35	 0.32	 0.38	 0.82	 0.66	 1			 

Common factor 
means (α)	 0.00	 0.00	 0.00	 -0.73	 0.51	 -0.35	 0.12	 -0.04	 -0.02		
				  
n = 170; Results indicating across-measurement variance are printed in bold. Factor loadings are unstandardised, but covariances are decomposed into variances and correlations

Table 3	Goodness of overall fit of models in the three-step response shift 
	 detection procedure

Table 4	Parameter estimates in the response shift model



Objective 1: Comparison of 
then-test approach and SEM 
approach in the decomposition of 
observed change
The results of the decomposition of observed 
change for both the then-test approach and the SEM 
approach are presented in Table 5.

Observed change: The results of the observed 
change indicate deteriorations that are considered 
‘small’ effects for RP, BP, VT and FT, deterioration 
that is considered a ‘medium’ effect on PF and 
improvements that are considered ‘small’ effects 
for MH and RE. The pattern of observed change 
is found to be similar for both approaches, with 
only small differences in the standardised mean 
differences. 

True change: Both the then-test approach and the 
SEM approach also revealed a similar pattern of 
change for true change, except for GH. While the 
observed change for GH was not significant, both 
approaches revealed a significant true change for 
GH, albeit in the opposite direction. The then-
test approach showed significant improvement of 
GH, while the SEM approach showed significant 
deterioration of GH.

Response shift: Both approaches revealed a 
significant positive response shift for BP, indicating 
that the true change of BP is larger than the observed 
change in BP. Only the SEM approach revealed a 

significant positive response shift for RP (resulting 
in a larger true change), and a significant negative 
response shift for SF (resulting in a smaller true 
change), while for the then-test approach these 
response shifts did not reach statistical significance. 
The response shifts detected for GH are in the 
opposite direction, with a negative response shift 
for GH according to the then-test approach and a 
positive response shift for GH according to the SEM 
approach, although the latter reaches a higher level 
of significance.

Objective 2: Tenability of 
assumptions underlying the 
then-test approach
Recall assumption: Results indicate that the 
differences between pre-test and then-test common 
factor means were non-significant (p > .05) for 
all common factors: GenPhys (0.12), GenMent 
(-0.04), and GenFitn (-0.02). This indicates that the 
assumption that respondents are able to recall their 
state at pre-test has been met for all SF-36 and MFI 
scales.

Consistency assumption: Results indicate that there 
are some parameters of the measurement model that 
are not invariant across post- and then-test measures: 
uniform recalibration of RP and reprioritisation of SF 
on GenPhys affect only the post-test, while uniform 
calibration of GH and reconceptualisation of VT for 
Genphys affect only the then-test. Also, the factor 
loading of GH on GenMent differs between the post- 
and then-test. Therefore, the second assumption is 
rejected for GH, RP, SF and VT.

Recalibration assumption: Results show that indeed 
some response shifts of the recalibration type 
were found (uniform recalibration of RP, BP and 
GH and nonuniform recalibration of VT), but that 
reprioritisation (of SF) and reconceptualisation (of 
GH on GenMent and VT on GenPhys) were also 
found. Therefore, the third assumption is rejected for 
GH, SF and VT.

Discussion

In this study a comparison was made between the 
then-test approach and the SEM approach in the 
detection of response shift in HRQL data from 
cancer patients undergoing invasive surgery. Results 
indicate that the decomposition of observed change 
is similar for both approaches, in that the size of 
true change is equal except for the direction of 
change in GH. The assessment of response shift 
differs somewhat, as only the SEM approach reveals 
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	 Then-test approach		  SEM 
				    approach	

Scale	 Observed	 True	 Response	 Observed	 True	 Response
	 change	 Change	 shift a	 change 	 change	 shift

PF	 -0.59**	 -0.66** 	  0.07	 -0.51**	 -0.51**	  -
RP	 0.27**	 -0.38**	  0.12	 -0.28**	 -0.47**	  0.19a**
BP	 -0.20**	 -0.40**	  0.20**	 -0.25**	 -0.42**	  0.17a**
SF	 -0.11	 -0.06	 -0.05	 -0.09	  0.01	 -0.10b*
MH	  0.40**	  0.39**	  0.01	  0.37**	  0.37**	  -
RE	  0.21**	  0.27**	 -0.06	  0.26**	  0.26**	  -
VT	 -0.30**	 -0.33**	  0.03	 -0.31**	 -0.31**	  -
GH	 -0.00	  0.18*	 -0.18*	 -0.01	 -0.15**	  0.14b**
FT	 -0.35**	 -0.30**	 -0.05	 -0.32**	 -0.32**	  -

n = 170; standardised mean differences of 0.2, 0.5, and 0.8 indicate small, medium,
and large  differences (Cohen, 1988); *p < 0.05, **p < 0.01 in paired t-test (then-test 
approach) or inspection of confidence intervals (SEM approach); a = recalibration 
response shift, b = reprioritisation response shift

Table 5	The decomposition of observed change into true change and response 		
	 shift (displayed as standardised differences), for both the then-test 		
	 approach and the SEM approach



response shifts for RP and SF, and the response shift 
detected in GH reaches a higher level of significance 
(see Visser et al., 2005 for a substantive explanation 
of these differences). In a study by Ahmed, Mayo, 
Wood-Dauphinee, Hanley, and Cohen (2005) 
the then-test approach was also compared with a 
method that also uses SEM. They did not detect any 
response shift using the SEM technique, while the 
then-test approach did reveal several response shifts. 
However, an explanation for this discrepancy could 
be that the measurement model used in the study by 
Ahmed et al. was suboptimal (Borsboom, Korfage, 
Essink-Bot, & Duivenvoorden, 2007) and that 
their SEM method is not as sensitive in detecting 
response shift effects as our SEM approach (Ahmed, 
Bourbeau, Maltais, & Mansour, 2009). In the present 
study, we showed that it is possible to use the SEM 
approach to make a substantive comparison between 
different methodologies for the detection of response 
shift by looking at the decomposition of observed 
change into true change and response shifts. 

The second objective of this study was to test the 
underlying assumptions of the then-test approach. 
Our results supported the Recall Assumption for 
all scales (indicating no evidence of recall bias or 
alternative cognitive explanations), but failed to 
support the assumption that internal standards of 
measurement are invariant across post-and then-
test (Consistency Assumption rejected for four 
scales), and indicated that not all response shifts 
found were of the recalibration type (Recalibration 
Assumption rejected for three scales). These results 
are in line with a study by Nolte, Elsworth, Sinclair, 
and Osborne (2009) who applied SEM to assess 
psychometric properties of the then-test (using the 
Health Education Impact Questionnaire (heiQ)). 
They tested measurement invariance for the pre- 
and post-test factor model and then- and post-test 
factor model. They found different types of response 
shift for the post- and then-test, thus rejecting the 
Consistency Assumption for several scales, and 
concluded that the application of the then-test is 
not supported. Although their SEM approach used 
two models to test the underlying assumptions of 
the then-test approach, whereas our SEM approach 
consisted of a single combined model, both 
studies are illustrative of how the then-test can be 
incorporated into the SEM approach so that the 
underlying assumptions of the then-test approach 
can be evaluated. Testing the underlying assumptions 
of the then-test approach through SEM is useful for 
determining the validity of the then-test approach in 
assessing changes in HRQL.

If we combine our findings, we can assess the 
consequences of rejection of the assumptions 
underlying the then-test approach for the 

decomposition of observed change. For example, the 
rejection of the Recalibration Assumption (required 
for a valid assessment of response shift) for GH 
and SF coincides with a difference in assessment 
of response shift between the then-test approach 
and the SEM approach for these scales. Also, the 
rejection of the Consistency Assumption (required 
for a valid assessment of true change) for GH goes 
together with a difference in the assessment of true 
change between approaches, in that the then-test 
approach reveals a change in the opposite direction 
compared with the change detected in the SEM 
approach. However, the rejections of the Consistency 
Assumption for RP and SF do not seem to affect 
the assessment of true change and rejection of 
assumptions for VT was inconsequential for the 
decomposition of observed change. Concluding, 
the rejection of underlying assumptions is reflected 
in the decomposition of observed change, but the 
pattern is not fully consistent. 

The then-test approach and SEM approach use 
different methods for the detection of response 
shift. An advantage of the then-test approach is the 
relatively simple analysis for detecting response 
shift (e.g. t-tests). However, a valid assessment 
of change depends on the Recall, Recalibration, 
and Consistency Assumption. Also, the then-test 
approach requires an additional assessment, which 
can be an extra burden to patients. Using the 
SEM approach, there is no need for an additional 
assessment and a valid assessment of change 
does not depend on the Recall, Recalibration, and 
Consistency Assumption. However, the statistical 
analysis for the detection of response shift is 
relatively complicated. Moreover, decisions on 
which parameters are freed (e.g. which variable 
shows which type of response shift) are guided not 
only by statistical procedures or thresholds, but also 
by substantive considerations. This is necessary 
because relying on statistics alone could lead to 
freeing parameters that might not be theoretically 
sensible (e.g. an observed variable at post-test 
that is an indicator of a latent variable at pre-test). 
Consequently, this decision involves a subjective 
judgment by the researcher. For example, it could 
be that freeing the factor loading of either one of 
two indicators of a latent variable yields the same 
result, and renders it unnecessary to free the other 
factor loading. This means that the researchers have 
to decide which of those factor loadings would be 
justified to free. The advantage is that response 
shift detection in the SEM approach is not only 
statistically but also theoretically driven, and will 
therefore lead to more logical and probable models. 
A disadvantage is that results depend – partly – on 
these subjective decisions; others may make different 
choices. Therefore, it should be noted that it was 
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not the objective of this study to draw substantive 
(clinical) conclusions about the response shift 
found. The results in this study serve for illustrative 
purposes only. 

In conclusion, incorporating the then-test into the 
SEM approach: 1) allows for a comparison of the 
then-test approach and the SEM approach in their 
decomposition of observed change; 2) provides the 
possibility to test the underlying assumptions of 
the then-test approach; and 3) gives an idea of the 
consequences of rejection of underlying assumptions 
on the decomposition of observed change. To be 
able to draw valid conclusions in the assessment 

of HRQL, we need to be aware of the limitations 
of HRQL measurement. Quantifying the existence 
and size of response shift and true change will 
help to better understand the observed change of 
HRQL. Future research should focus not only on 
validating the measurements of HRQL, but also on 
investigating the (clinical) consequences of violating 
the validity on the change assessments. 
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It is generally acknowledged that internalising and externalising problems are closely related and often co-occur. 
This comorbidity may result from various patterns of influence between internalising and externalising symptoms. 
The cross-lagged panel model and the latent growth curve model have become popular tools to assess the causal 
pathways between both types of problem behaviour in a non-experimental context. The present study shows, 
however, that both methods have serious limitations that do not allow for definite conclusions concerning the 
causal direction between externalising and internalising problems. The present article describes a continuous-time 
procedure for analysing cross-lagged panel data by means of structural equation modelling (SEM) that circumvents 
these limitations: The ADM/SEM procedure using the approximate discrete model (ADM). The procedure is applied 
to the analysis of three waves of annually collected self-report data on adolescents’ externalising and internalising 
problems. Results suggest a unidirectional effect from externalising problems to internalising problems, thus 
providing support for the failure perspective. Implications for theory, research, and practice are discussed.

Where: Netherlands Journal of Psychology, Volume 67, 68-80

Causal directions between 
adolescents’ externalising and 
internalising problems: 
A continuous-time analysis

A vast body of research has shown that externalising 
and internalising problems are closely related and 
often co-occur (Beyers & Loeber, 2003; Gilliom 
& Shaw, 2004; Lilienfeld, 2003; Overbeek et al., 
2006). Although comorbidity has been reported in 
many studies, the nature of the association between 
externalising and internalising symptoms is not 
yet fully understood (Lee & Bukowski, 2012). It is 
important to know what causal mechanisms account 
for the comorbidity of externalising and internalising 
problems in order to develop effective interventions.

Several possible pathways have been proposed that 
may explain the association between externalising 
and internalising problems. In attempts to find 
empirical evidence for these pathways, researchers 
have generally employed two types of longitudinal 
models: cross-lagged panel models (e.g., Overbeek, 

Vollebergh, Meeus, Luijpers, & Engels, 2001) and 
latent growth curve models (Lee & Bukowski, 
2012). Below, we will review findings from research 
using either type of model and point out that, 
although these longitudinal approaches clearly have 
important advantages over cross-sectional designs, 
they are still problematic in several ways. Next we 
will demonstrate how continuous-time analysis can 
solve most of these problems. Our general aim is to 
encourage applied researchers to use this approach.

Explanations for the co-occurrence 
of externalising and internalising 
problems 
Directional explanations of the association 
between internalising and externalising argue that 



this association may be the result of three causal 
pathways. According to the failure perspective 
(see e.g., Burke, Loeber, Lahey, & Rathouz, 2005; 
Capaldi, 1992), conduct problems may lead to 
internalising problems. Conduct problems are 
assumed to lead to failures in social situations that, 
in turn, lead to depression and anxiety. There is also 
literature suggesting effects in the opposite direction, 
that is from internalising problems to externalising 
problems. The theory of masked depression, for 
example, suggests that depressive symptoms lead 
to acting out behaviours, as children express their 
underlying depression by acting out (Glaser, 1967). 
Depression may impair individuals’ concern about 
the adverse consequences of their actions, thereby 
increasing the risk for certain forms of antisocial 
behaviour (Capaldi, 1991). Finally, according to the 
mutual influence perspective, externalising problems 
lead to internalising problems and vice versa. In 
addition to these directional models, common 
vulnerability models (Jackson & Sher, 2003) assume 
no influences between externalising and internalising 
problems, but believe that the impact of non-specific 
(i.e., shared or overlapping) risk factors accounts for 
the co-occurrence of externalising and internalising 
problems (Overbeek et al., 2001). Below, we give 
a short description of the cross-lagged panel model 
and the latent growth curve model, as well as a 
short review of the findings emerging from their 
application to the analysis of reciprocal relations 
between externalising and internalising problems. 

Cross-lagged panel models

Cross-lagged panel models circumvent the difficult 
problem of assessing causal direction in cross-
sectional research as the causal direction in cross-
lagged panel models is not based on instantaneous 
relations between simultaneously measured variables 
x and y. Instead, different variables are used for 
opposite directions, in this case externalising 
problems at time point 1 affecting internalising 
problems at time point 2, and internalising problems 
at time point 1 affecting externalising problems 
at time point 2. Within the cross-lagged panel 
model, both problem behaviour variables at one 
measurement time point are regressed on their 
own lagged score plus the lagged score of the 
other problem behaviour variable at the previous 
measurement time point (Delsing & Oud, 2008). The 
resulting cross-lagged coefficients inform about the 
causal direction between both problem behaviours. 
Although it is not impossible to add the mean 
structure to the analysis, usually only the covariance 
structure is analysed in cross-lagged panel analyses 
and not the mean structure.

Mixed results have emerged from studies using 
cross-lagged panel models. Using data from a 
four-wave longitudinal study with six-month 
intervals, Wiesner (2003) found a relatively small 
unidirectional effect from delinquency to depression 
for middle adolescent boys, whereas bidirectional 
effects were found for girls. Using a cross-lagged 
design with a two-year interval in a sample of 
middle adolescents, Ritakallio et al. (2008) found 
that depression predicted subsequent antisocial 
behaviour among girls, but conversely, antisocial 
behaviour did not predict subsequent depression. 
Surprisingly, a negative effect was found from 
depression to antisocial behaviour among boys, 
suggesting that depression protects from subsequent 
antisocial behaviour. Hipwell et al. (2011) used a 
cross-lagged design with nine waves of annually 
collected data (ages 8 through 16 years) and found 
that conduct disorder often preceded depression 
across this developmental period, although the 
effect sizes were small. There was less consistent 
prediction from depression to conduct disorder. 
Vieno, Kiesner, Pastore, and Santinello (2008) 
used a cross-lagged panel model with a ten-month 
interval in a sample of early adolescents and found 
that depressive symptoms predicted later antisocial 
behaviour, but that antisocial behaviour did not 
predict later depression. In one of their models, 
Vieno et al. (2008) estimated both a cross-lagged 
and instantaneous (i.e., going from one problem 
behaviour variable to the other at the same time 
point) effect from depression to antisocial behaviour. 
Only the instantaneous effect was found to be 
significant. Curran and Bollen (2001) used a four-
wave cross-lagged panel model with two-year 
intervals and found antisocial behaviour to positively 
predict later depressive symptoms, but earlier 
depressive symptoms did not predict later antisocial 
behaviour. Finally, using cross-lagged panel analyses 
with two-year intervals in a community sample 
of adolescents and young adults, Overbeek et al. 
(2001) found that a stability model with no cross-
lagged relations between emotional disturbance and 
delinquency fits best for the total sample, as well 
as across age and gender categories. This led them 
to conclude that the co-occurrence of emotional 
disturbance and delinquency during adolescence and 
young adulthood seems to result from associated but 
separate psychopathological processes.

Latent growth curve models

Reciprocal associations between externalising and 
internalising problems have also been analysed 
within a latent growth curve framework (see e.g., 
Gilliom & Shaw, 2004; Lee & Bukowski, 2012). In 
contrast to the cross-lagged panel models in which 
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prior values of variables determine the current 
value of the same or other variables, the latent 
growth curve model specifies separate trajectories 
over time for separate variables and separate cases. 
Each case in the sample can have a different time 
trend as marked by a different intercept or slope 
when tracked over time (Rao, 1958; Tucker, 1958; 
Meredith & Tisak, 1990). The latent intercept 
corresponds to the t = 0 value of the individual 
longitudinal curve, while the latent slope reflects 
the individual change rate over time. Latent growth 
curve models also inform about the variances of the 
latent intercepts and slopes, indicating the amount 
of inter-individual differences in the t = 0 values and 
in the longitudinal change process, respectively. In 
contrast with the typical cross-lagged panel model, 
the latent growth curve model also analyses the 
mean structure. 

Important in this respect is that latent growth curve 
models enable researchers to test for correlations 
between the latent intercept and the latent slope. 
Thus, one may find out whether the change in 
a given construct (e.g., externalising problems) 
is related to its initial value (if t = 0 is located at 
the initial time point). Reciprocal associations 
between externalising and internalising problems 
are investigated by means of the simultaneous 
specification and estimation of latent growth curve 
models for each of the problem behaviour variables. 
Latent growth factors (intercept and slope) for 
both problem behaviour variables and the relations 
between the intercepts of the problem behaviour 
variables, between the slopes, and between the 
intercepts and slopes are evaluated. Somewhat 
similar to the cross-lagged design in which one 
problem behaviour variable at one point in time is 
used to predict the other problem behaviour variable 
at a later point in time, authors have used the 
intercept of externalising problems as a predictor of 
the change rate (slope) in internalising problems, and 
the intercept of internalising problems as a predictor 
of the change rate in externalising problems (Oud, 
2010).

Applying latent growth curve analysis, Gilliom and 
Shaw (2004) found that initial values of mother-
reported externalising problems were related to 
steeper increases in mother-reported internalising 
problems over time with boys followed from age 
2 to 6. Similarly, Keiley, Bates, Dodge, and Pettit 
(2000) found that children with a relatively high 
initial status on teacher-reported externalising 
behaviours in kindergarten were seen by later 
teachers as becoming increasingly internalising. 
Using a sample of South Korean fourth graders, Lee 
and Bukowski (2012) also found that higher initial 
levels of externalising problems were related to 

steeper increases in internalising problems over time, 
but such a unidirectional relationship was only found 
for girls. Among boys, initial levels of externalising 
and internalising problems were found to be related 
to the developmental pattern of the other domain 
(i.e., internalising and externalising problems, 
respectively), thus suggesting a bidirectional 
pattern of influence. A similar bidirectional pattern 
was reported by Measelle, Stice, and Hogansen 
(2006), who found that initial depressive symptoms 
predicted future increases in antisocial behaviour 
and that initial antisocial symptoms predicted future 
increases in depressive symptoms in a community 
sample of adolescent females who were followed 
annually from early to late adolescence. In the 
Curran and Bollen (2001) study referred to above, 
the authors also applied a latent growth curve model 
to the analysis of their data. A significant positive 
relation was found between the depressive symptoms 
intercept and the antisocial slope, suggesting that 
individual differences in depressive symptoms are 
positively associated with antisocial behaviour 
increases over time. In addition to the cross-lagged 
panel model and the latent growth curve model, 
Curran and Bollen also used a model combining both 
cross-lagged associations with associations at the 
level of the growth factors. Findings from this hybrid 
so-called autoregressive latent trajectory (ALT) 
model again revealed earlier levels of antisocial 
behaviour to predict later levels of depressive 
symptoms as well as a positive relation between the 
depressive symptoms intercept and the antisocial 
slope.

Altogether, empirical support for externalising 
problems leading to internalising problems and 
internalising problems leading to externalising 
problems is inconsistent. Accordingly, we do not 
know which causal direction is more likely to occur. 
As we will demonstrate below, these inconsistencies 
may partly be due to methodological limitations of 
the cross-lagged panel model as it is typically used, 
namely in its discrete-time version. We will also see 
that substantive interpretations of the associations 
between the intercept and slope factors in latent 
growth curve models leave much to be desired. 
Below, we will first describe shortcomings of the 
discrete-time cross-lagged panel model and the latent 
growth curve model, respectively, for establishing 
the causal direction between externalising and 
internalising problems. Next, we present a 
continuous-time version of the cross-lagged model 
that circumvents these shortcomings. This procedure 
is applied to the analysis of reciprocal relations 
between externalising and internalising problems.
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Limitations of discrete-time 
cross-lagged panel models

Although externalising and internalising problems 
influence themselves and each other continuously 
over time, researchers are forced to use ‘snapshots’ 
of this developmental process in order to learn 
something about the underlying continuous-time 
process (Voelkle, Oud, Davidov, & Schmidt, 2012). 
Longitudinal designs, in which the same subjects 
are repeatedly observed across time, are typical 
examples of such ‘snapshots.’ In such designs, 
measurements are typically taken not more than 
once or twice a year, resulting in relatively large 
observation intervals. The challenge for applied 
researchers is then to obtain an estimate of the 
underlying continuous-time effect that adequately 
reflects the underlying continuous-time process. 
Below, we will see that discrete-time cross-lagged 
effects do a rather poor job in this respect. As 
a consequence, discrete-time modelling is an 
oversimplification and often a distortion of reality. 

A serious limitation of discrete-time cross-lagged 
effects is that they are highly dependent on the length 
of the discrete-time observation intervals (Delsing, 
Oud, & De Bruyn, 2005; Delsing & Oud, 2008; Oud, 
2007; Oud & Delsing, 2010; Voelkle et al., 2012). 
In general, cross-lagged effects have a value of 0 
over a zero time interval (different variables cannot 
yet have any influence on each other over a zero 
time interval), increase more or less rapidly with 
increasing intervals until a maximum is reached, and 
eventually return to 0 with further increasing intervals. 
Most of the studies referred to above used different 
measurement intervals (e.g., 6 months, 10 months, 1 
year), which makes their outcomes incomparable and 
often contradictory. Even conclusions regarding cross-
lagged effects across equal measurement intervals 
within or across studies are problematic since these 
effects may be totally different, and may even change 
sign, across other measurement intervals. They 
may also provide a totally different picture than the 
underlying continuous-time effects (Oud, 2007). This 
makes discrete-time analysis useless for establishing 
the causal directions between externalising and 
internalising problem behaviour.

The final problem concerns the possibility to analyse 
cross-lagged effects (e.g., externalising problems 
at time point 1 affecting internalising problems at 
time point 2, internalising problems at time point 1 
affecting externalising problems at time point 2) as 
well as instantaneous cross-effects (i.e., externalising 
problems at time point 2 affecting internalising 
problems at time point 2 and vice versa) in the cross-
lagged panel model for the same data. The study by 
Vieno et al. (2008) referred to above, for example, 

which simultaneously estimated a cross-lagged effect 
and instantaneous effect from depression to antisocial 
behaviour, found that the results for both kinds of 
effects differed and only the instantaneous effect was 
significant. In discrete time, there is no way to relate 
the two different sets or to combine them in a unitary, 
unequivocal measure for the underlying causal effects.

Limitations of latent growth  
curve models

In studies using latent growth curve models, 
conclusions regarding reciprocal associations between 
externalising and internalising problems are based 
upon the associations between the intercept factor 
of one problem behaviour variable and the slope 
factor of the other problem behaviour variable. Such 
conclusions are highly problematic, however, since 
both the intercept and slope are time-unspecific 
(Bollen & Curran, 2004; Delsing & Oud, 2008). 
Note the fundamental difference in this respect with 
the cross-lagged parameters in the cross-lagged 
panel model, which reflect the connection between 
specific temporally ordered moments in time. 
Causal mechanisms can be characterised as ‘time-
specific’ or, as it is called in the state-space literature, 
‘nonanticipative’ (Oud, 2010). Because of their 
time-unspecific character, causal interpretations of 
intercept-slope associations are impossible. Therefore, 
these associations cannot provide any ‘support’ for 
causal connections. Another factor complicating the 
interpretation of the association between the intercept 
and slope factor is that this association is highly 
dependent on the coding of time, as reflected by the 
factor loadings of the slope factor. This has long been 
recognised for the association between the intercept 
and slope factor in the same variable (Biesanz, Deeb-
Sossa, Papadakis, Bollen, & Curran, 2004; Bollen 
& Curran, 2006; Mehta & West, 2000). Recently, 
however, Oud (2010) has proven that this also holds 
for associations between the intercept in one variable 
(e.g., externalising problems) and the slope in a 
different variable (e.g., internalising problems). In 
fact, Oud (2010) showed that by shifting the time 
scale almost any covariance and correlation value can 
be reached. This dependence on the choice of the zero 
time point in the time scale renders any substantive 
interpretation of the intercept-slope covariances 
doubtful.

Continuous-time analysis

The problems discussed above associated with the 
use of discrete-time cross-lagged panel models and 
latent growth curve models can be solved by using 
a continuous-time version of the cross-lagged panel 
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model1. Oud (2007) discusses two continuous-time 
procedures using structural equation modelling 
(SEM): the exact discrete model (EDM/SEM) and 
the approximate discrete model (ADM/SEM). 
The EDM, introduced in 1961-1962 by Bergstrom 
(1988), links in an exact way the discrete-time model 
parameters to the underlying continuous-time model 
parameters by means of nonlinear restrictions. The 
link is made by solving the stochastic differential 
equation for the discrete-time interval. Crucial 
for the EDM is the exact solution, that is, the 
unique solution satisfying the differential equation. 
Mathematical details and derivations for the EDM/
SEM procedure can be found in Oud and Jansen 
(2000) and in Oud and Singer (2008). A general 
way to estimate a stochastic differential equation 
model is by applying the nonlinear constraints of the 
EDM during estimation by means of an appropriate 
nonlinear SEM software package such as Mx (Neale, 
Boker, Xie, & Maes, 1999) or OpenMx (Boker et al., 
2011). This method can be applied in models with 
either equal or unequal measurement intervals as 
well as in models with time-varying parameters. 

The solution of the problem referred to above 
regarding the two sets of coefficients in a cross-
lagged analysis (i.e., instantaneous and cross-lagged 
coefficients) gives rise to an alternative model: 
Bergstrom’s (1966, 1984) approximate discrete 
model (ADM). Whereas the exact nonlinear 
constraints of the EDM require SEM programs 
possessing the exponential function (e.g., Mx and 
OpenMx), the ADM can also be applied in less 
nonlinearly oriented SEM programs such as LISREL 
(Jöreskog & Sörbom, 1996), AMOS (Arbuckle, 
2007), EQS (Bentler, 2006), or Mplus (Muthén & 
Muthén 1998). Like the EDM/SEM procedure, the 
ADM/SEM procedure is applicable for models with 
unequal observation intervals but not for models 
with continuously time-varying parameters.

According to Bergstrom’s ADM (Bergstrom, 1966; 
1984, pp. 1172–1173), the simple linear constraints
	 Ains =  .5  Ã∆t
	 Alag =  I  + .5  Ã∆t
lead to reasonable, so-called ‘trapezoid’ (Gard, 
1988, pp. 192), approximations of time-invariant 
continuous-time parameters. Ains refers to the 
instantaneous effects matrix, Alag refers to the 
lagged effects matrix, I refers to the identity 
matrix of which diagonal elements equal 1 and 
off-diagonal elements equal zero, and Ã  refers to 

the approximate continuous-time effects matrix. 
Suppose the observation intervals ∆t are equal 
and for convenience set at ∆t = 1, then one needs 
only to constrain the off-diagonal elements in Ains 
(i.e., instantaneous cross-effects) and Alag (i.e., 
cross-lagged effects) to be equal and each diagonal 
element in Alag (i.e., autoregression effects) to be 
1 plus the corresponding diagonal element in Ains 
(i.e., self-loop effects), while one computes Ã (i.e., 
approximate continuous-time effects) as 2Ains. 
The easy implementation of the linear constraints 
makes the ADM a feasible and attractive alternative 
to the EDM for comparing the results of different 
observation intervals between and within studies and 
for solving the problem of ‘contradictory’ results 
between instantaneous and lagged coefficients 
(e.g., Vieto et al., 2008). Interestingly, the ADM is 
one of the few cases in SEM where the self-loop 
coefficients (diagonal element in Ains) are estimated 
instead of being specified to be zero. Because of 
its simplicity and easy implementation, the present 
study applies the ADM procedure. By doing so, we 
want to encourage applied researchers to start using 
this approach in their own work.

Method

Participants and Procedure
The data were taken from a more comprehensive 
Dutch study of family relationships and adolescent 
problem behaviour (the Nijmegen Family and 
Personality Study; Haselager & Van Aken, 
1999). The participants were 280 adolescents 
(140 boys, 140 girls) who were 14.5 years old on 
average (ranging from 11.4 to 16.0) at the first 
measurement wave. Further details regarding 
sample characteristics and procedure can be found 
in Delsing, Van Aken, Oud, De Bruyn, & Scholte 
(2005).

Measures
To assess adolescents’ externalising and 
internalising problem behaviour, four scales of 
the Nijmegen Problem Behaviour List (NPBL; 
Scholte, Vermulst, & De Bruyn, 2001) were used 
at each of the three annual measurement waves: 
Aggressive and Delinquent Behaviour problems 
(together Externalising), and Withdrawn and 
Anxious/Depressed Behaviour problems (together 
Internalising). Each scale consists of five items. The 
structure of the NPBL was modelled according to 
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1 The problems discussed with regard to the discrete-time cross-lagged panel model and the latent growth 
curve model equally apply to the ALT model (Curran & Bollen, 2001), which is a synthesis of both models. 
Delsing and Oud (2008) and Oud (2010) demonstrated how these and other problems associated with the ALT 
model can be solved by, respectively, a continuous-time autoregressive latent trajectory (CALT) model and a 
second-order stochastic differential equation model.



the Child Behaviour Checklist (CBCL; Verhulst, Van 
der Ende, & Koot, 1996). However, in contrast with 
the CBCL, the NPBL focuses on subclinical instead 
of clinical problem behaviour. The items represent 
the most common problems in adolescence that 
cause some concern, but are not serious enough for 
referral. Examples of items are: ‘This person does 
things that could get him/her into trouble with the 
law’ for Delinquency; ‘This person fights a lot’ for 
Aggressive Behaviour; ‘This person would rather 
be alone than with other people’ for Withdrawn; 
‘This person feels sad and unhappy’ for Anxious/
Depressed Behaviour. Adolescents were asked to 
indicate on five-point Likert scales ranging from 
1 (not at all true) to 5 (completely true) the extent 
to which each item was true. Internal consistencies 
were .80 and .83 with regard to externalising 
problems and internalising problems, respectively.

Data analysis
Because applied researchers are generally more 
familiar with linearly oriented SEM programs such 
as LISREL (Jöreskog & Sörbom, 1996) or Mplus 
(Muthén & Muthén, 1998) which, however, do 
not provide the exponential function with matrix 
algebraic means necessary for applying the EDM/
SEM procedure, we applied the ADM/SEM 
procedure to establish the reciprocal effects between 
adolescents’ externalising and internalising problem 
behaviours. In addition to the ADM continuous-time 
restrictions described above, two other adaptations 
were made to the ‘standard’ cross-lagged panel 
model, namely, the addition of intercepts and 

random subject effects. Intercepts accommodate for 
the frequently observed nonzero and nonconstant 
mean trajectories. By means of the specification of 
random subject effects, subject specific conditional 
mean trajectories are obtained, each keeping a 
subject specific distance from the sample mean 
trajectory. The zero mean normally distributed 
random subject effects can be viewed as a special 
kind of (unobserved and constant over time) state 
variables, sometimes called ‘trait’ variables. The 
additions of nonconstant means and trait variables to 
the ‘standard’ cross-lagged panel model are highly 
relevant in behavioural science. The very concept 
of development implies nonconstant means and 
developmental curves of different subjects rarely can 
be assumed to coincide or even to follow parallel 
paths (Oud, 2007).

Figure 1 shows the model that was estimated. The 
model contains the state variables Ext and Int and 
corresponding constant trait variables Trait-Ext 
and Trait-Int which, because of the number of time 
points being 3, leads to a total of 8 variables in the 
structural equation model. In total, 21 parameters 
had to be estimated:
	 • 4 continuous-time drift coefficients
	 • 2 initial latent means
	 • 3 initial state variances and covariances
	 • 2 intercepts feeding changes in mean 		

  development
	 • 3 trait variances and covariances
	 • 4 covariances between traits and initial states
	 • 3 state variable disturbance variances and 

covariances.

There are 6 observed variables or 6 observed means 
and 21 (distinct) elements in the observed covariance 
matrix, resulting in (21 + 6) – 21 = 6 degrees of 
freedom for the SEM model. The latent means for 
the trait variables are 0 by definition. Trait variables, 
constant over time but varying over subjects, 
accommodate for deviations of subject specific 
developmental curves from the mean curve. Effects 
from the trait variables to Ext and Int at waves 2 and 
3 are fixed at 1. Measurement error variances were 
fixed at zero. Parameter estimates pertaining to the 
first measurement interval (t0 to t1) were set equal 
to corresponding estimates pertaining to the second 
measurement interval (t1 to t2). See the Appendix for 
the LISREL script for ADM/SEM procedure.

Results

In Table 1, the estimation results for the ADM are 
given. With regard to the four drift coefficients 
(auto- and cross-effects), an important difference 
in interpretability exists between the auto-effects 
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Figure 1 The three-wave ADM/SEM cross-lagged panel model for adolescents’ externalising and 
internalising problem behaviours, including random subject effects
Ext = Externalising problem behaviour, Int = Internalising problem behaviour 



of externalising problems (Ext1 –› Ext1) and 
internalising problems (Int1 –› Int1) on the one hand 
and the cross-effects from externalising problems 
to internalising problems (Ext1 –› Int1) and from 
internalising problems to externalising problems 
(Int1 –› Ext1) on the other hand. The auto-effects 
are scale free in the sense that they do not change 
under arbitrary linear transformations of Ext and 
Int and so are directly interpretable. In particular, 
both Ext and Int show negative feedback (-0.780 
and -1.058), implying stability or a tendency for 
individuals to converge to the subject specific mean 
trajectories. The continuous-time auto-effects of 
-0.780 and -1.058 in the ADM transform for Δt 
= 1 to autoregressive coefficients of 0.458 and 
0.347 for externalising and internalising problems, 
respectively. To become comparable, the cross-
effects, not being scale free, have been standardised 
by multiplying by the ratios of the initial standard 
deviations. The standardised values of 0.791  
(p < .01) and 0.347 (p > .05) in Table 1 seem to 
reveal the existence of a unidirectional effect from 
externalising problems to internalising problems. 
The longitudinal influence from externalising 
problems to internalising problems goes together 

with a moderate cross-sectional correlation of 
0.341 between the two variables at the first time 
point (implied by covariance 11.007 in Table 1 and 
variances 27.281 and 38.195 for externalising and 
internalising problems, respectively).

Autoregression and cross-lagged coefficient 
functions, based on the differential equation 
model
An interesting feature of the continuous-time 
modelling approach is that, on the basis of the 
continuous-time effects, one can assess the discrete-
time effects as a function of the measurement 
interval. The autoregressive functions in Figure 2 and 
cross-lagged effect functions in Figure 3 are based 
on the estimates of the continuous-time auto-effects 
and cross-effects resulting from an EDM analysis of 
the cross-lagged panel model for externalising and 
internalising problem behaviours. The autoregression 
functions show the autoregression values (for Δt = 
1 being 0.458 for Ext and 0.347 for Int) as part of 
an ongoing process. Starting from 1 (autoregression 
between a variable and its lag, when the interval 
length Δt = 0), they display the autoregression over 
increasing intervals. It turns out that both Ext and 
Int go down rather rapidly, and after Δt = 1 (the 
one-year period between the first and second wave) 
less than half of the autoregression at the start is 
left. The autonomous decrease in Ext appears to be 
somewhat slower than that of Int. So, Ext turns out 
to be a somewhat more persistent property across 
time than Int.

Figure 3 shows the standardised cross-lagged effects 
between externalising and internalising problems 
as a function of the time interval. It is clear that the 
standardised effect of Ext on Int (standard deviation 
unit increase in Int as a result of an isolated increase 
of 1 standard deviation in Ext) is a) much stronger 
than in the opposite direction over quite a long 
period of time, b) builds up rather rapidly until it 
reaches its maximum value of 0.386 shortly after 
1 year and c) goes down rather rapidly afterwards, 
having a standardised effect of less than one third of 
its maximum level after 5 years. 

Interpolated and predicted mean development 
of Ext and Int autoregression
One may wonder what the interplay between Ext and 
Int leads to in terms of interpolated and predicted 
mean development. This is shown in Figure 4. The 
model implies a rather flat pattern, indicating an 
extremely slow, virtually linear, decrease in both 
Ext and Int. The interpolated decrease in Ext over 
the five-year period is from 17.943 to 17.687. The 
interpolated decrease in Int over the five-year period 
is even smaller, and goes from 21.103 to 20.945.
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Parameter	 ADM

Ext1 → Ext1 (self-loop)		  -0.780**
Ext1 → Int1		  0.791**
Int1 → Ext1		  0.347
Int1 → Int1 (self-loop)		  -1.058**
Variance Ext0		 27.281**
Variance Int0		 38.195**
Covariance Ext0-Int0		 11.007**
Error variance Ext1		 24.071**
Error variance Int1		 40.463**
Error covariance Ext1-Int1		  6.590**
Mean Ext0		 17.943**
Mean Int0		 21.103**
Mean change coefficient Ext		  7.632
Mean change coefficient Int		  5.581
Variance Trait-Ext		 10.721
Variance Trait-Int		 26.237
Covariance Trait-Ext Trait-Int		 -15.029
Covariance Trait-Ext Ext0		  7.022
Covariance Trait-Ext Int0		  -5.495
Covariance Trait-Int Int0		 14.777
Covariance Trait-Int Ext0		 -12.769

χ2 		  5.389
Df		  6
RMSEA		  .000

*p ≤ .05; **p ≤.01

Table 1	Parameter estimates and model fit information for the approximate 		
	 discrete model (ADM)



Discussion
The purpose of the present study was to investigate, 
in continuous time, the causal influences between 
adolescents’ externalising and internalising problem 
behaviour. We started by pointing out several 
problems associated with the methods typically used 
to shed light on this issue, namely, the discrete-time 
cross-lagged panel model and the latent growth 
curve model. These problems arise mainly from 
the effects in the cross-lagged panel model being 
highly dependent on the length of the measurement 
interval, and from the time-unspecific character of 
the intercept and slope factors in the latent growth 
curve model. Moreover, the association between 
the intercept and slope factor is an artifact of the 
time scale used and contains little empirical value. 
We demonstrated how continuous-time analysis 
of the cross-lagged panel model circumvents these 
problems. 

Application of the ADM/SEM revealed a 
unidirectional effect from externalising problems to 
internalising problems, thus providing support for 
the failure perspective (see e.g., Burke et al., 2005, 
Capaldi, 1992). A specific cascade model that has 
been proposed to account for the cross-over effect 
of externalising problems to internalising problems 
is the so-called dual failure model (Patterson & 
Capaldi, 1990; Patterson, Reid, & Dishion, 1992). 
According to this model, externalising problems 
hamper successful development of two key domains 
of competence, namely peer relations and academic 
performance. In turn, difficult peer relationships 
and poor academic development lead to an increase 
in internalising problems. Empirical support for 
this model was provided by Van Lier et al. (2012). 
In their recent cross-lagged panel study in which 
externalising and internalising problems, peer 
victimisation, and school achievement were assessed 
annually in a sample of early elementary school 
aged children, externalising problems were found to 
lead to academic underachievement and experiences 
of peer victimisation. Academic underachievement 
and peer victimisation, in turn, predicted increases 
in externalising problems. These findings applied 
equally to boys and girls. In accordance with 
the present study, no links from internalising to 
externalising problems were found. These findings 
suggest that interventions should target adolescents’ 
externalising problems in order to prevent spillover 
to academic achievement and peer functioning and, 
eventually, internalising problems. Interventions 
could also focus directly at academic achievement 
and peer functioning in order to ‘eliminate’ 
the mediating link between externalising and 
internalising problems. 
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Figure 2 Autoregression functions of Externalising problem behaviour (solid line) and 
Internalising problem behaviour (dotted line)

Figure 3 Cross-lagged effect functions of Internalising problem behaviour on Externalising 
problem behaviour (solid line) and of Externalising problem behaviour on Internalising problem 
behaviour (dotted line)

Figure 4 Interpolated and predicted mean development of Externalising problem behaviour 
(solid line) and Internalising problem behaviour (dotted line) over 5 years



Because no studies to date have applied a 
continuous-time approach to the analysis of the 
bidirectional influences between externalising and 
internalising problems, it is difficult to compare our 
results to previous findings. The discrete-time effects 
reported in previous studies do not inform directly 
about the underlying continuous-time effects. As 
noted before, contradictory results may be obtained 
when translating discrete-time effects to their 
underlying continuous-time effects.

In spite of its innovative methodology to unravel 
the causal processes behind the co-morbidity 
of adolescents’ externalising and internalising 
problems, the present study has several limitations. 
First, we investigated bidirectional associations 
between externalising and internalising problems 
in a community sample of adolescents. We do not 
know to what extent our findings generalise to 
other age groups. The failure experiences that are 
supposed to mediate the link between externalising 
and internalising problems may be age-graded 
and may be more or less important across varying 
developmental stages (Wiesner, 2003). The results 
of Van Lier et al.’s (2012) study reported above, 
however, suggest that failure experiences may 
also be relevant as a mediator in younger children. 
Furthermore, causal influences may be different 
in referred adolescents. Our findings regarding the 
co-occurrence of sub-clinical levels of externalising 
and internalising problems cannot automatically 
be generalised to psychiatric disorders. Therefore, 
future studies should attempt to corroborate our 
findings in other age groups and clinical samples. 

Second, rather than the EDM, we applied the 
ADM procedure by means of which we obtained 
approximate parameter estimates of the continuous-
time cross-effects. The EDM, introduced in 
1961–1962 by Bergstrom (1988), links in an exact 
way the discrete-time model parameters to the 
underlying continuous-time model parameters by 

means of nonlinear restrictions. An advantage of 
the ADM, however, is that it allows less nonlinearly 
oriented SEM programs such as LISREL (Jöreskog 
and Sörbom, 1996) or Mplus (Muthén & Muthén, 
1998) to be used in parameter estimation. As we 
have seen, the ADM utilises only simple linear 
restrictions to approximate the differential equation 
model. We chose to use the ADM because we 
want to encourage applied researchers to use this 
procedure, and anticipated most of them would be 
familiar with popular programs such LISREL or 
Mplus. In a simulation study comparing the EDM 
and ADM procedure, Oud (2007) demonstrated that 
the ADM performed about equally well in overall 
quality as the EDM, and even defeated it in models 
with trait variables and samples N ≤ 400, as was the 
case in the present study. 

Acknowledging these limitations, the present study 
has demonstrated a clear alternative for the methods 
currently used in practice. These methods have 
serious limitations that prevent the accumulation of 
knowledge regarding the nature of the influences 
between externalising and internalising symptoms. 
By showing how these problems can be solved 
by means of continuous-time analysis, we want 
to encourage applied researchers to apply the 
continuous-time procedure in their investigations 
of the causal effects between externalising and 
internalising problems. For this specific purpose 
we have included an Appendix with the LISREL 
script for the ADM/SEM procedure. Application 
of continuous-time methods facilitates the 
comparability of results across studies and may 
thus help to build a knowledge base that leads 
to a better understanding of the causal processes 
between adolescents’ externalising and internalising 
problems. In the long run, this knowledge base 
may facilitate the development of more specifically 
tailored interventions aimed at improving 
adolescents’ behavioural and emotional functioning.
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Appendix. 

LISREL script for ADM/SEM procedure

See the model specified in Figure 1 and the ADM restrictions. 
Appropriate observation intervals should be substituted for ‘delta1’ 
and ‘delta2’ in lines 14-31 (in our application, delta1 and delta2 both 
equal 1).
Last variable in data matrix ‘filename’ on line 2 should be the unit 
variable.

1	 DA NI=7 NO=280 MA=MM
2 	 RA FI=filename
3 	 MO NY=7 NE=9 LY=FU,FI BE=FU,FI PS=SY,FI TE=SY,FI 	
	 AP=4

	 !Measurement model
4 	 VA 1 LY 1 1 LY 2 2 LY 3 3 LY 4 4 LY 5 5 LY 6 6

	 !Mean structure
5	 VA 1 LY 7 7

	 !Lagged and instantaneous and auto- and cross-effects
6	 FR BE 3 1 BE 3 2 BE 4 1 BE 4 2 BE 3 3 BE 3 4 BE 4 3 BE 4 4
7	 FR BE 5 3 BE 5 4 BE 6 3 BE 6 4 BE 5 5 BE 5 6 BE 6 5 BE 6 6

	 !Intercepts
8	 FR BE 1 7 BE 2 7 BE 3 7 BE 4 7 BE 5 7 BE 6 7

	 !Process error (co)variances
9	 FR PS 1 1 PS 2 2 PS 3 3 PS 4 4 PS 5 5 PS 6 6
10	 FR PS 2 1 PS 4 3 PS 6 5

	 !Trait (co)variances
11	 FR PS 8 8 PS 9 9 FR PS 9 8 

	 !Initial state-trait covariances
12	 FR PS 8 1 PS 8 2 PS 9 1 PS 9 2 

	 !Unit moment
13	 FR PS 7 7

	 !Continuous-time restrictions
14	 CO BE 3 3 = .5* delta1*par(1)
15	 CO BE 3 4 = .5* delta1*par(2)
16	 CO BE 4 3 = .5* delta1*par(3)
17	 CO BE 4 4 = .5* delta1*par(4)
18	 CO BE 5 5 = .5*delta2*par(1)
19	 CO BE 5 6 = .5*delta2*par(2)
20	 CO BE 6 5 = .5*delta2*par(3)
21	 CO BE 6 6 = .5*delta2*par(4)

22 	CO BE 3 1 = .5* delta1*par(1) +1 		
	 !BE 3 1 = BE 3 3 + 1
23 	CO BE 3 2 = .5* delta1*par(2) 		
	 !BE 3 2 = BE 3 4
24 	CO BE 4 1 = .5* delta1*par(3) 		
	 !BE 4 1 = BE 4 3

25 	CO BE 4 2 = .5* delta1*par(4) +1 		
	 !BE 4 2 = BE 4 4 + 1
26 	CO BE 5 3 = .5* delta2*par(1) +1 		
	 !BE 5 3 = BE 5 5 + 1
27 	CO BE 5 4 = .5* delta2*par(2) 		
	 !BE 3 4 = BE 5 6
28 	CO BE 6 3 = .5* delta2*par(3) 		
	 !BE 6 3 = BE 6 5
29 	CO BE 6 4 = .5* delta2*par(4) +1 		
	 !BE 6 4 = BE 6 6 + 1

	 !Trait state effects
30 	VA delta1 BE 3 8 BE 4 9
31 	VA delta2 BE 5 8 BE 6 9

32	 OU ADD=OFF

Comments:
Line 1-3
As seen in Figure 1, there are 3 time points and 2 observed variables 
at each time point which makes the number of variables 6, but 
the extra unit variable (1 for all sample units) to accommodate for 
the mean structure in the model makes the total number of input 
variables NI=7. The sample size specified is NO=280 and, as we 
include the mean structure in the model, the matrix to be analysed 
becomes the moment matrix MA=MM. A raw data file (280x7) with 
name ‘filename’ is specified, as the model has as many observed 
variables as the data file, NY=7. The number of latent variables is 
NE=9, because there are 2 variables per time point (see Figure 1), 
2 trait variables, and the unit variable is added to the model. The 
model is specified by means of 4 matrices: LY (factor matrix), BE 
(effect matrix), PS (error covariance matrix) and TE (measurement 
error covariance matrix). To start with, all 4 matrices are specified 
to be fixed (FI); parameters to be estimated will be specified free 
(FR) below. While the matrices LY and BE are specified full (FU), 
the covariance matrices PS and TE are specified symmetric (SY). 
Finally AP=4 stands for 4 extra continuous-time parameters which 
will be defined and used in the ADM continuous-time restrictions 
(lines 14-29).

Line 4
This line specifies the fixed nonzero coefficients in the measurement 
model matrix LY. 

Line 5
The fixed 1 in line 5 makes sure that the observed unit variable 
(observed variable 7) becomes variable 7 of the latent part.

Line 6-7
Line 6 frees the 4 elements of lagged effects matrix Alag and the 4 
elements of instantaneous effects matrix Ains (see ADM continuous-
time restrictions) at time point t1 and line 7 at time point t2. These 
coefficients will be restricted according to the ADM in lines 14-29.
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Line 8
Line 8 frees first the initial means and then the intercepts at time 
points t1 and t2, respectively.

Line 9-12
Line 9 frees first the initial variances and then the pairs of error 
variances at time points t1 and t2. Line 10 frees the covariances for 
the pairs of variables specified in line 9. Next, line 11 and 12 free 
trait variances and covariances and the covariances of the traits with 
the initial states.

Line 13
This frees the moment of the unit variable, which is 1 and should be 
estimated at this value in a good solution.

Line 14-31
In this part, the 4 approximate continuous-time parameters of the 
ADM are defined by means of the ADM constraints (CO is the 
LISREL command for specifying this type of constraints). Par(1), 
par(2), par(3), and par(4) are the 4 drift parameters in Ã. The lines 
14-21 implement Ains = .5 Ã∆ t. Lines 22-29 implement Alag = I + 
.5 Ã∆ t. Because LISREL does not allow recursive constraining, 
parameters like BE 3 3 in line 22, which were constrained earlier, 
are replaced by the original constraint. Finally, in lines 30-31, the 
right coefficients for ‘delta1’ and ‘delta2’ (in this case 1) are inserted 
in BE for the trait variables.

Line 32
To avoid the program stops running before a solution is found, the 
admissibility check is put off.
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Accommodation of genotype-
environment covariance in a 
longitudinal twin design

Quantitative genetics is concerned with determining 
the genetic and environmental influences on 
behavioural variance within a well-defined 
population. To determine which portion of 
the phenotypic variance is due to genetic and 
environmental influences, researchers often use the 
classical twin design (Figure 1), i.e., the comparison 
of monozygotic (MZ) and dizygotic (DZ) twins 
growing up together (Eaves, Last, Martin, & Jinks, 
1977; Van Dongen, Slagboom, Draisma, Martin, & 
Boomsma, 2012). Using this design, quantitative 
genetic studies have produced a wealth of results 
concerning the genetic and environmental influences 
to the observed multivariate and longitudinal 
covariance structure of different complex traits, 
such as cognitive abilities (see Plomin, DeFries, 
McClearn, & McGuffin, 2008). The application of 
the classical twin design to longitudinal data has 

shown that genetic and environmental influences 
are present throughout the lifespan. For a range 
of traits, the contribution of genetic influences to 
the phenotypic variance tends to increase, while 
the contribution of the environmental influences 
decreases from childhood into adulthood. For traits 
such as IQ, common environmental influences 
(i.e., environmental influences shared by twins that 
contribute to their similarity) are present prior to 
adolescence, but decrease in importance later in 
adolescence, while unique environmental influences 
(i.e. environmental effects unique to each twin which 
contribute to the dissimilarity of twins) are present 
throughout (e.g., Bartels, Rietveld, Van Baal, & 
Boomsma, 2002; Boomsma et al., 2002; Cardon, 
Fulker, & DeFries, 1992; Hoekstra, Bartels, & 
Boomsma, 2007; Petrill et al., 2004; Rietveld, Dolan, 
Van Baal, & Boomsma, 2000). 



Most applications of the classical twin design come 
with well-known model assumptions, including 
absence of genotype by environment interaction 
(GxE interaction), zero genotype-environment 
covariance (GE covariance) (see dotted arrows in 
Figure 1), and random mating (i.e., zero spousal 
correlation; Eaves et al., 1977). These assumptions 
are known, or are suspected, to be violated to some 
degree in different complex traits. For instance, it is 
well known that assortative mating plays a role in 
intelligence (i.e., a positive correlation between IQ 
test scores of spouses; Eaves, 1973). For example, 
if data on parents of twins are available this 
information can be accommodated in the twin model 
(e.g., Martin, Eaves, Heath, Jardine, Feingoldt, & 
Eysenck, 1986). GxE interaction, i.e., moderation 
of genetic effects by environmental variables, 
or a dependence of environmental exposures on 
genotype, has been assessed thanks to advances 
in statistical modelling, enabling researchers to 
incorporate measured moderators, such as SES, into 
the twin model (Purcell, 2002; Harden, Turkheimer, 
& Loehlin, 2006; Boomsma & Martin, 2002). GE 
covariance has generally received less attention, 
although theoretically GE covariance is probably 
important, and has been hypothesised to explain 
increased heritability with age (Kan, Wicherts, 
Dolan, & Van der Maas, under revision). 

The absence of GE covariance is certainly a strong 
assumption for many complex traits (Plomin et al., 
2008). This assumption is often made pragmatically; 
in a design that includes only MZ and DZ twins 
applied to univariate data obtained at a single 
occasion, the covariance between genetic and 

environmental influences is not identified, and 
therefore cannot always be estimated. Here we 
explore whether GE covariance can be estimated 
from longitudinal data in the classical twin 
design using the genetic simplex (Boomsma & 
Molenaar, 1987). The genetic simplex provides 
a decomposition of phenotypic variance into 
genetic and environmental components at each 
measurement occasion (Figure 2). In addition, the 
genetic simplex expresses the phenotypic stability, 
i.e., the phenotypic correlation of a trait over time, in 
terms of genetic and environmental stability. In the 
standard genetic simplex, GE covariance is assumed 
to be absent as there is no direct or indirect pathway 
between genotypic and environmental components 
(Figure 2).

Developmental psychologists and behaviour 
geneticists, however, have long recognised definite 
processes giving rise to GE covariance (Carey, 
1986; Eaves et al., 1977; Loehlin & DeFries, 1987; 
Plomin, DeFries, & Loehlin, 1977; Scarr, 1992; 
Scarr & McCartney, 1983). An important theoretical 
distinction is made between passive, reactive, 
and active GE covariance (Loehlin & DeFries, 
1987; Plomin et al., 1977; Scarr, 1992; Scarr & 
McCartney, 1983): passive GE covariance arises 
when parents supply both genes and environment 
during the development of their offspring (i.e., smart 
parents transmit ‘smart’ genes and provide a ‘smart’ 
environment); reactive GE covariance arises when 
certain genotypes evoke certain reactions in the 
environment (e.g. ‘smart’ individuals evoke ‘smart’ 
reactions from their environment); and active GE 
covariance arises when individuals actively seek out 
environments consistent with their phenotype (i.e., 
‘smart’ children seeking out a ‘smart’ environment). 
Provided that individual differences in the phenotype 
are at least partially due to genetic factors, these 
processes give rise to GE covariance. 

Two conceptualisations of GE covariance are niche 
picking and sibling effects. Niche picking gives rise 
to within-individual GE covariance, as it involves 
an individual’s choice or preference for certain 
environments, based on personal interest, talent, and 
personality (Scarr, 1992, Scarr & McCartney, 1983). 
This process thus implies a pathway between the 
individual’s genotype and his or her environment, 
possibly mediated via the phenotype. Sibling effects 
give rise to between-individual GE covariance, as 
one sibling might directly or indirectly influence the 
other sibling’s environment (Eaves, 1976; Carey, 
1986), creating a pathway from one individual’s 
genotype toward another individual’s environment. 
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Figure 1 Classical twin-design model. This is the simplified representation of the classical 
twin model. In this simplified representation, (A) represents the additive genetic influences, 
(E*) represents the total environmental influences, and (P) the phenotype. The correlation 
between the environmental effects (E1* and E2*) is due to common environmental effects (C). 
Correlation between A1 and A2 equals 1 in monozygotic, and .5 in dizygotic twins, due to genetic 
resemblance. In this model GE covariance (dotted arrows) and GxE interaction are assumed to 
be absent



The aim of the present paper is to consider the 
specification of GE covariance processes in the 
genetic simplex and to explore the possibility to 
incorporate GE covariance in longitudinal twin 
models. We limit ourselves to the processes of 
niche picking and sibling effects in the simplex 
model including additive genetic (A) and unique 
environmental effect (E), and in a special case of 
a model with A, E, and common environmental 
effects (C) (see below). The setup of this paper is 
as follows: First, we represent the genetic simplex 
model, which we use as our starting model in which 
we incorporate GE covariance. Second, we consider 
the specification of GE covariance as arising 
through the processes of niche picking and sibling 
effects in three models: the within twin member’s 
niche picking model, the between twin members’ 
sibling effects model, and the combination of these 
two in the combined model. Third, we investigate 
the identification and resolution of these extended 
models, and compute the power to detect the 
parameters which give rise to GE covariance. We 
conclude with a brief discussion.

The genetic simplex

The genetic simplex model (Boomsma & Molenaar, 
1987) has been used extensively to model 
longitudinal data in the classical twin design (e.g., 
Bartels et al., 2002; Bishop et al., 2003; Cardon et 
al., 1992; Petrill et al., 2004; Rietveld et al., 2000). 
The genetic simplex involves the regression of 
the phenotype measure at time point t, Ptij, on the 
additive genetic (Atij), common (Ctij), and unique 
environmental variables (Etij):
Ptij = Atij + Ctij + Etij + etij		
	 (1)
where t denotes the measurement occasion (t=1...T), 
i denotes the twin pair, and j denotes the twin 
member. The term etij represents an occasion-
specific residual, which may include genetic and 
environmental influences along with measurement 
error. Assuming the variables A, C, and E are 
uncorrelated, and given a correction for the occasion 
specific variance var(et) (e.g., if var(et) is a pure 
measurement error, this would be a correction for 
attenuation), the implied decomposition of variance 
at occasion t is 
var(Pt) = var(At) + var(Ct) +var(Et), 		
	 (2)
and the narrow sense heritability is h2

t= var(At)/
[var(At)+var(Ct)+var(Et)]. The phenotypic stability is 
modelled by specifying autoregressive processes for 
At, Ct, and Et. Limiting the equations to the additive 
genetic process, this entails the regression of 
At+1 on At: 
At+1ij = βAt+1Atij + ζAt+1,		
	 (3)

where βAt+1 is the autoregressive coefficient and 
ζAt+1 is the residual, or innovation term. The implied 
variance decomposition is var(At+1) = βAt+1

2var(At) 
+ var(ζAt+1), where var(ζAt+1) is the residual or 
innovation variance. The covariance between A 
at t and t+1 equals cov(AtAt+1) = βAt+1var(At). We 
may also consider the percentage of explained 
variance in this regression, i.e., RAt+1

2 = βAt+1
2var(At) 

/ [βAt+1
2var(At) + var(ζAt+1)]. Note that this 

percentage depends on the relative magnitudes of 
the autoregressive coefficient, βAt+1, and the residual 
variance, var(ζAt+1). The regression model applies to 
Ctij and Etij as well, so that the phenotypic covariance 
of the phenotype at t and t+1 is decomposed as 
follows:
cov(PtPt+1) = βAt+1var(At)+ βCt+1var(Ct)+ βEt+1var(Et).	
 	 (4)

The genetic simplex provides an informative 
decomposition of the phenotypic variance at each 
occasion and of the contribution of genetic and 
environmental effect to the stability and change 
over time. Note that in the simplex (i.e., excluding 
the parameters giving rise to GE covariance), the 
first and the last occasion specific variances (var(e1) 
& var(e2)) are not identified. Identification can be 
achieved by setting these terms to zero, or by the 
imposition of the constraints var(e1) = var(e2) and 
var(eT-1) = var(eT). During our model evaluation, 
we imposed these latter equality constraints. Also 
note that the model includes several special cases. 
For instance, if the parameters of βA approach zero 
this implies that genetic effects do not contribute to 
stability. If var(ζA) approaches zero (given βA are 
not equal to zero), the genetic stability is perfect 
(i.e., RA

2 approach 1). If this is the case throughout 
the time period considered, the (genetic part of 
the) autoregressive model tends towards a single 
common factor model (Bishop, et al., 2003). 

Twin studies based on the genetic simplex have 
provided detailed information on the contributions 
of genetic and environmental factors to the 
longitudinal covariance structure of complex traits, 
such as cognitive abilities. During the development 
of cognitive abilities during early childhood, the 
influences of additive genetic components (A) 
follow a simplex pattern (i.e., both βA and var(ζC) 
greater than zero; Bishop et al., 2003; Cardon 
et al., 1992; Rietveld et al., 2000, Petrill et al., 
2004). As such, additive genetic influences are 
both a source of stability and change. Unique 
environmental influences (E) mostly contribute to 
instability, as βE are relatively low and var(ζE) are 
non-zero (Bartels et al., 2002; Cardon et al., 1992; 
Petrill et al., 2004; Rietveld et al., 2000). Common 
environmental influences (C) mostly contribute to 
stability during early development, as βC tends to 
approach unity and var(ζC) tend to zero (Bartels et 
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al., 2002; Bishop et al., 2003; Cardon et al., 1992; 
Petrill et al., 2004; Rietveld et al., 2000). Common 
environmental influences decrease in magnitude later 
in life, disappearing altogether in late adolescence. 
In addition, it has been established that the relative 
contribution of A increases, and that of E decreases 
over time (i.e. heritability increases over time, e.g., 
Bartels et al., 2002; Bishop et al., 2003; Boomsma 
et al., 2002; Haworth et al., 2010; Petrill et al., 
2004,). Although the contributions of heritability and 
environment are robust and well established, the role 
of GE covariance has not been taken into account in 
these longitudinal studies. 

Methods

Introducing GE covariance processes
We took the genetic simplex (Figure 2) as our 
starting model to introduce parameters giving 
rise to GE covariance. The simplex, as shown, 
accommodates common environmental influences 
(C) by the specification of correlated environmental 
influences (dotted arrows) rather than by the 
specification of a separate simplex process for C. By 
assessing the total environmental effects (E*=C+E), 
instead of estimating each component separately, 
the specification and investigation of GE covariance 
originating in sibling effects and niche picking is 
greatly simplified1. So we considered two different 
models namely; 1) the AE model in which only 
additive genetic variance and unique environmental 
variance influence the phenotypic variance (i.e. the 
pathway between E,,1, and E,,2 is not included; 2) 
the AE* model in which the unique environmental 
effects and the common environmental effects are 
captured in one term namely E*. 

By introducing crossed lagged phenotype to 
environment pathways within the two longitudinal 
models, we accommodated GE covariance within 
(i.e., niche picking) and between twins (i.e., sibling 
effects). Specifically, we viewed niche picking as the 
influence of phenotypic variable at occasion t on the 
environmental variable at time point t+1 within each 
individual (Figure 3, Model 1). We accommodated 
sibling effects by introducing a cross lagged pathway 
from the phenotypic variable of one twin member 
at occasion t on the environment of the other twin 
member at time point t+1 (Figure 3, Model 2)2. 
Finally, these two models can be combined (Figure 3, 
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Figure 2 Simplified basic genetic simplex model, depicted with the minimum set of time 
points necessary to be able to identify the model. Note that E* represents total environmental 
influences, which are correlated between twins due to common environmental influences (C) 
depicted by the dotted pathways (AE *model). If this pathway is dropped, the model reduces to 
the AE model, in which only additive genetic variance (A) and unique environment (E) influence 
the phenotype (P)

Figure 3 Path diagrams of three extensions of the basic genetic simplex model. To avoid clutter, 
only two time points (t=t, t+1) are depicted. The correlations between twins for var(A) (at t=t) 
and var(ζA) (at t=t+1,...) equals 1 and .5 in MZ and DZ twins, respectively. The covariance 
between the total environmental effects var(E) (at t=t) and var(ζE) (at t=t+1,...) are estimated,  
to accommodate common environmental effects

Model 1	 Model 2	 Model 3		
Niche picking	 Sibling effects	 Niche picking & Sibling effects
Pt,1 → Et+1,1...	 Pt,1 → Et+1,2	 Pt,1 → Et+1,1, Pt,2 → Et+1,2

Pt,2 → Et+1,2...	 Pt,1 → Et+1,1	 Pt,2 → Et+1,1, Pt.2 → Et+1,2

1 Note that our AE* simplex model is nested under the standard ACE simplex model, i.e., the standard ACE 
simplex will fit data generated with our AE* simplex model. The AE* simplex implies that in the standard 
ACE simplex the autoregressive coefficients of the E simplex equal those of the C simplex. This nesting is 
amenable to statistical testing.
2 Note that this parameterisation of sibling effects deviates from previous methods such as that of Carey 
(1986) in which a polynomial was used to estimate GE covariance.



Model 3), incorporating niche picking and sibling 
effects simultaneously. Note that we did not consider 
the direct path from A to E. Therefore we worked 
under the assumption that any effect of A on E must 
be mediated by the phenotype P. Still the pathway 
from P to E does imply GE covariance, as with this 
path in place, A and E are connected indirectly. For 
instance, in model 1 of Figure 3, the covariance 
between At,1 and Et+1,1 is due to the path from At,1  
to Pt,1, and from Pt,1 to Et,1. 

Model evaluation
To establish whether extending the simplex model 
(i.e., the proposed cross lagged pathways) is 
practically feasible, we evaluated the extended 
models with respect to local identification, 
resolution, and power. First, we established model 
identification, which concerns the question whether 
the unknown parameters in the model can be 
estimated uniquely given appropriate longitudinal 
twin data. We distinguished between numerical 
and analytical identification. We considered both, 
because analytical identification does not rule 
out empirical under-identification. Empirical 
identification implies that fitting the true model to 
exact population MZ and DZ matrices produces a 
zero χ2 value and perfect recovery of the parameter 
estimates regardless of variation in the starting 
values. A model is analytically identified if the 
Jacobian matrix of the model is of full column 
rank (Bekker, Merckens, & Wansbeek, 1993). The 
elements in the Jacobian matrix are the derivatives 
of each element in the population (MZ and DZ) 
covariance matrices to the unknown parameters 
(Derks, Dolan, & Boomsma, 2006; see also Bollen 
& Bauldry, 2010). We established analytical 
identification using the Maple program (Heck, 
1993). To specify GE covariance, we added the cross 
lagged parameters (i.e., the additional parameters 
in the models depicted in Figure 3) to the basic 

simplex, without giving any additional constraints. 
If this model is not identified, we proceeded by 
imposing constraints on the parameters underlying 
GE covariance or on the other parameters in the 
model (Maple input is available on request). Second, 
we determined the resolution to see how well the 
competing models can distinguish between different 
effects. It is necessary to establish that two models 
(say model 1 and 2, as depicted in Figure 3), while 
both being identified, are not equivalent (i.e., they 
should not fit the data containing different effects 
equally well). To establish this, we fitted data 
generated according to one model and fitted all other 
models, which should result in misfit expressed in 
χ2 values greater than zero. Third, we computed 
the power of each model to detect the parameters 
underlying the GE covariance, given an α of .05. 
To calculate the power, we first constructed MZ 
and DZ population covariance matrices according 
to the model of interest, i.e., giving the parameters 
underlying the GE covariance a certain value. Fitting 
the true model will then produce a χ2 statistic of 
zero. Dropping the parameter of interest, i.e., those 
associated with niche picking and/or sibling effects, 
will result in a positive χ2 statistic. This statistic 
can be used to calculate the power to detect the 
parameters underlying the GE covariance (Satorra & 
Saris, 1985). We computed the power for all nested 
models (Figure 4) using sample sizes up to 3000 
twins and a fixed α of .05 (R scripts are available on 
request).

Calculation of covariance matrices
The numerical population MZ and DZ covariance 
matrices are calculated in four different scenarios (no 
GE covariance; GE covariance in the form of niche 
picking, GE covariance in the form of sibling effect, 
GE covariance in the form of a combined effect; see 
Figures 2 and 3), the two different models (AE and 
AE*), four time points and 1000 MZ and 1000 DZ 
twin pairs (see Table 1 for parameter values). In the 
AE* models, we included common environmental 
variance as the covariance between the environmental 
variables. To accommodate increasing heritability, 
the genetic innovations terms var(ζA) and the 
autoregressive coefficients βA increase with time, 
while the values for the environmental innovations 
terms var(ζE) and the autoregressive coefficients βE 
decrease. The strength of the niche picking effect 
(βPE i.e. the GE covariance due to paths from Pt,1 to 
Et+1,1, and from Pt,2 to Et+1,2, see Figure 3) is set to 
equal .1 for the first time point t, adding a value of 
.01 for each additional time point. The strength of 
the sibling effects (βPE* i.e. GE covariance due the 
path from Pt,1 to Et+1,2 and Pt,2 to Et+1,1, see Figure 3) 
is set to .05 at time point one, again adding a value of 
.01 for each additional time point (* indicates these 
parameters concern the sibling effects). We chose the 
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Figure 4 Nesting of the models of interest



occasion specific variance (var(et)) to approach 20% 
of the phenotypic variance. While the parameter 
values chosen here are somewhat arbitrary, the 
parameters do give rise to summary statistics that 
resemble those reported in the literature on cognitive 
abilities. That is, given the present parameter values, 
heritability increases over time (h2 = .50, .622, .679, & 
.774). We performed numerical analyses using R (R 
Development Core Team, 2012) and LISREL 8.80 
(Jöreskog & Sörbom, 2006). 

 Results

Model identification
We first established analytic identification of the 
three GE covariance extensions (Figure 3) in both 
the AE and the AE* models. To establish which 
constraints are identifying, we started with the 
most unconstraint model, a model without any 
equality constraints on the parameters, except for the 
standard equality constraints on the occasion specific 
variance mentioned above (i.e. var(et) = var(et+1) and 
var(et+2) = var(et+3)), and worked through different 
constraints to see if the models were identified (see 
Table 2). Note that the basic model is identified if 
the parameters underlying GE covariance are fixed 
to zero. 

The analytical identification procedures indicated 
that none of the extended models are identified 
without additional constraints. This was true in both 
the AE and the AE* models. For each extension (i.e., 
either for niche picking, sibling effects, or these 
effects combined), we determined which restrictions 
rendered the models identified. To this end, we first 
explored the possibilities within the parameters used 
to model GE covariance. One way to restrict the GE 
covariance parameters is by constraining the GE 
covariance parameters to be equal over time (i.e., 
for niche picking model: βPEt+1 =βPEt+2 =βPEt+3 , for 
sibling effects model: βPEt+1

*
 =βPEt+2

* =βPEt+3
*, and for 

the combined model: βPEt+1 =βPEt+2 =βPEt+3 & βPEt+1
* 

=βPEt+2
* =βPEt+3

*). These equality constraints resulted 
in identification of the models in both the AE and 
the AE* models. A less restrictive identifying 
constraint is the use of a two parameter model (i.e., 
βPE = δ00+δ01(t-2)), in which δ00 resembles the 
intercept of the regression (i.e. the initial influence 
of GE covariance) and δ01 the direction coefficient 
of the regression slope coefficient (i.e. the change 
in the influence of GE covariance with time). By 
using the two parameter model we allowed linear 
changes in the GE covariance estimates over time. 
We used the following parameters for the niche 
picking model: βPE= δ00+δ01(t-2), the sibling effects 
model βPE

* = δ00
*+δ01

*(t-2), and for the combined 
model βPE = δ00+δ01(t-2) & βPEt

* = δ00
*+δ01

*(t-2)). 
Again this identifying constraint resulted in model 
identification. By using different constraints for the 
GE covariance parameter, the extended models are 
thus identified. 

Second, we explored constraints on other parameters 
in the model to determine if these constraints 
rendered the parameters underlying GE covariance 
identified (without imposing any constraints on these 
parameters). As can be seen in Table 2, in the sibling 
effects model, many different constraints render the 
sibling effect parameters (i.e., model 2 in Figure 3) 
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	 Value given at time point

Parameter	 t	 t+1	 t+2	 t+3

ΨA	 10	 2	 3	 4
ΨAA(MZ/DZ)	 10/5	 2/1	 3/1.5	 4/2
ΨE	 10	 3	 2.5	 2
ΨEE	 2	 1	 1	 1
var(e)	 3	 3	 2	 2
var(ζA)		  2	 3	 4
var(ζE)		  3	 2.5	 2
βA 		  0.6	 0.7	 0.8
βE		  0.2	 0.25	 0.3
βPE		  0.1	 0.11	 0.12
βPE*		  0.05	 0.06	 0.07

		  Is the model identified?

Identifying constraint	 Max # of  	 Niche	 Sibling	 Combined
	 parameters	 picking	 effects	 Model
	 for GE
	 covariance			 

βPet+1 =βPEt+2 =βPet+3	 1	 Yes	 -	 No
βPet+1

* =βPEt+2
* =βPEt+3

*	 1	 -	 Yes	 No
βPet+1=βPEt+2=βPEt+3 & βPEt+1

*=βPEt+2
* =βPEt+3

*	 1	 -	 -	 Yes
βPE= δ00+δ01(t-2)	 2	 Yes	 -	 No
βPE

* = δ00
*+δ01

*(t-2)	 2	 -	 Yes	 No
βPE = δ00+δ01(t-2) & βPet

* = δ00
*+δ01

*(t-2)	 2	 -	 -	 Yes
βAt+1=βAt+2=βAt+3 	 3	 Yes	 Yes	 Yes
βEt+1=βEt+2=βEt+3	 3	 Yes	 Yes	 Yes
βAt+1=βAt+2=βAt+3&βEt+1=βEt+2=βEt+3	 3	 Yes	 Yes	 Yes
var(ζAt+1)=var(ζAt+2)=var(ζAt+3)	 3	 No	 Yes	 No
var(ζEt+1)=var(ζEt+2)=var(ζEt+3)	 3	 No	 Yes	 No
var(ζAt+1)=var(ζAt+2)=var(ζAt+3) & 
var(ζEt+1)=var(ζEt+2)=var(ζEt+3) 	 3	 No	 Yes	 No
ΨEt+1=ΨEt+2=ΨEt+3	 3	 No	 Yes	 No
var(et+1)=var(et+2)=var(et+3)=var(et+3)	 3	 No	 Yes	 No	
	

Table 1	Overview of the parameter values used to calculate the MZ and DZ 		
	 covariance matrices

Table 2	Overview of constraints, the number of parameters used to estimate cross 	
	 lagged GE covariance, and analytical identification. The same results are 		
	 found for both the AE and the AE*models



identified. Within the niche picking model and 
combined model (models 1 and 3 in Figure 3), only 
constraints on the autoregressive coefficients (i.e., 
either βAt+1= βAt+2 = βAt+3 or βEt+1 = βEt+2 = βEt+3 or 
βAt+1 = βAt+2 = βAt+3 & βEt+1= βEt+2= βEt+3) rendered 
the GE covariance parameters identified. 

Lastly, we established numerical identification for 
each of the three GE covariance extensions (see 
Figure 3) in both the AE and the AE* models using 
the two parameter model to estimate GE covariance. 
To do so, we first calculated the population MZ and 
DZ covariance matrices, to which we fitted the data 
generating model, i.e., the true model under which 
the covariance matrix is calculated, in LISREL 8.80 
(Jöreskog & Sörbom, 2006). Although our results 
are limited to the parameter values chosen, we had 
no trouble fitting these models in LISREL. This 
suggests that, given the chosen parameter values, 
empirical under-identification was not a problem.

Resolution of the models
To determine whether the models were 
distinguishable, we generated MZ and DZ 
covariance matrices for all different effects (no 
effect, niche picking effect, sibling effect, combined 
effect) for both AE and the AE* models, and fitted 
various competing models to these covariance 
matrices (see Table 3). For instance, we fitted 
the niche picking model to covariance matrices 
generated with the sibling effects.

Our analyses led to several noteworthy observations 
(Table 3). First, in both AE and AE* models, fitting 
the basic model (i.e., no GE covariance) to the 
covariance matrices including GE covariance 
parameter leads to deviations from the zero χ2 
value. This shows the possibility to distinguish our 
proposed GE covariance models from the basic 
genetic simplex model. The low χ2 value obtained 
when fitting the basic model to niche picking 
data, indicates low power given any reasonable α. 
Thus given the chosen parameters values, niche 
picking (i.e., within individual GE covariance) 
has a relatively weak effect on the phenotypic 
covariance structure. The higher χ2 values, obtained 
when fitting the basic model to the sibling effects 
(i.e. between twin GE covariance) and combined 
model, indicate greater power, and thus a stronger 
effect on the phenotypic covariance structure. 
Second, when fitting the different GE covariance 
models to covariance matrices generated under the 
basic genetic simplex (i.e., fitting models with GE 
covariance parameters to data where GE covariance 
is absent) led to perfect model fit, as expected. 
This shows that the GE covariance parameters are 
correctly estimated to be zero when a GE covariance 
effect is absent. Third, when fitting the sibling 
effects model to niche picking or combined data, 
the model fit is almost perfect. This again indicates 
that the niche picking effect is hard to detect and to 
distinguish from the sibling effect. Fourth, fitting 
the niche picking model to the sibling effects and 
combined data led to large χ2 values, which indicates 
that when the sibling effect is present, the niche 
picking model will not fit well. 

Statistical power
The statistical power to detect different forms of 
GE covariance depends on the sample size and on 
α. Table 4 and Figure 5 give an overview of the 
number of twins needed to attain certain power 
given an α of .05. It can be concluded that, in terms 
of power, detecting niche picking is more difficult 
than detecting sibling effects. This conclusion is 
in line with the results presented earlier, where we 
found that the χ2 values were lower when fitting the 
basic simplex to data including the niche picking 
effect than to data including the sibling effects. 
The greatest power is found for the detection of the 
combined effects. It should be noted that this is an 
omnibus test, in which the power to detect sibling 
effects and niche picking effects are combined. 
When computing the power to detect these effects 
separately, it is clear that the sibling effects are easier 
to detect (Figure 5).
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Table 3	Overview of χ2 values obtained when fitting different models to 
	 different data sets

Fitted model

Fitted model

χ2 values obtained when fitting different models in AE model

		  Data generating model

	 Basic 	 Niche	 Sibling	 Combined
		  picking	 effects

Basic	 -		  1.14		  17.02+		  22.62+

Niche picking	 Perfect	 -	13.8+		  16.75
Sibling effects	 Perfect		  .77	 -	 1.71
Combined model	 Perfect	 Perfect	 Perfect	 -

χ2 values obtained when fitting different models in AE* model

		  Data generating model

	 Basic 	 Niche	 Sibling	 Combined
		  picking	 effects

Basic	 -		  .67		  21.74	 28.14
Niche picking	 Perfect	 -	16.16		  20.33
Sibling effects	 Perfect		  .55	 -	 .47
Combined model	 Perfect	 Perfect	 Perfect	 -

+ Models that experience computational problems when certain parameter values are 
used to calculate the MZ and DZ covariance matrices



Discussion

The aim of this paper was to specify processes 
giving rise to GE covariance within the genetic 
simplex model. To model GE covariance in 
the genetic simplex, we introduced phenotype 
to environment cross lagged relationships, 
representing niche picking effects, sibling effects, 
and the combined effects. We considered two 
models: one model with additive genetics and 
unique environmental influences (AE), and one 
model in which we accommodated the common 
environmental influences by covariance between 
E of each twin (AE*). First, we demonstrated the 
possibility to accommodate GE covariance in both 
the AE and AE* simplex models. The additional GE 
covariance parameters are identified under various 
identifying constraints. Identifying constraints may 
be imposed on the parameters accounting for the GE 
covariance. For instance, equality constraints and 
the use of a two parameter model (constraining the 
change in the parameters to be linear) rendered the 
model identified. Identification can also be achieved 
by imposing constraints on the standard parameters 
in the genetic simplex (e.g., the autoregressive 
coefficients). Given such constraints the parameter 
used to model GE covariance can be estimated 
freely at each time point. Second, we showed that 
it is possible, in principle, to determine whether an 
effect of GE covariance is present or not, as fitting 
a different model than the data generating model 
leads to non-zero χ2 values. Third, we showed that 
relatively large sample sizes are needed to reach 
sufficient power to detect GE covariance effects, 
given our present parameter values. It turns out 
that the power to detect GE covariance depends on 
the type of effect. Larger sample sizes are needed 
to detect the niche picking effects than the sibling 
effects or combined effects. As power depends on 
the number of observations, we expect that adding 
time points to the models will lead to greater power 
in addition to simply increasing the sample size. 

We emphasise that the present study is a first step 
towards establishing viable twin models including 
processes giving rise to GE covariance. Our present 
results are limited in the following respect. First, our 
results are limited to the scenarios considered, both 
in terms of measurement occasions (T=4) and of our 
choice of parameter values in our numerical results. 
Increasing the number of occasions is not likely to 
given rise to problems of identification. However, 
fewer occasions (say, 2 or 3) requires further study. 

Second, our results concerning power and resolution 
depend wholly on our choice of parameter values, 
and are limited accordingly. More extensive power 
analyses were beyond the present scope, but we 
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Table 4	The power, non-centrality parameter (italic), and degrees of freedom, 		
	 given an α of .05, for different sample sizes for both the AE models and the 	
	 AE* models

			   AE models	 AE* models

Data	 Fitted	 df	 2x	 2x	 2x	 2x	 2x	 2x	
generating	 model	  	 500	 1000	 1500	 500	 1000	 1500
model

Niche picking 

Sibling effects 

Combined model

Combined model

Combined model

Basic model

Basic model

Basic model

Niche picking

Sibling effects

2

2

4

2

2

    .10
    .57
    .75
  8.51
    .78
11.31
    .74
  8.38
    .12
    .86

    .08
    .34
    .85
10.87
    .87
14.07
    .82 
10.16 
    .07  
    .24 

    .15
  1.14 
    .97
17.02
    .98
22.62
    .96
16.75
    .20
  1.71

    .10
    .67
    .99
21.74
  1.00
28.14
    .99 
20.33 
    .09  
    .47 

    .20
  1.71
  1.00
25.53
  1.00
33.93
  1.00
25.12
    .28
  2.56

    .13
   1.01
  1.00
32.61
  1.00
42.21
  1.00 
30.49 
    .11 
    .70

Figure 5 Graphical representation of ratio between sample size and power, given an α of .05, for 
the different models



note that such analyses pose no great problem to 
carry out, and can be tailored to the researcher’s 
specific expectations. Our explorations of other 
parameter values showed that identification did not 
depend on the exact values (as expected). However, 
we did find that certain choices of parameters 
resulted in computational problems in fitting the 
basic (i.e., excluding parameters giving rise to GE 
covariance) genetic simplex. Notably, low values of 
the environmental autoregressive coefficient (e.g., 
βEt+1 =.1, βEt+2 =.15, βEt+3 =.2) in the sibling effects 
and the combined model rendered the basic simplex 
model computationally hard to fit as the occasion 
specific residual variances assumed negative values. 
This problem can be resolved by fixing these 
variances to zero. 

Finally, we have only considered the AE model 
and the AE* model. The AE model is standard in 
the absence of common environmental influences 
(C). The AE* model treats common and unique 
environmental influences as ‘total environmental 
effects’, rather than explicitly modelling separate 
E and C processes. The AE* model is nested under 

the ACE model (as the ACE model with equal 
autoregressive C and E parameters implies the 
AE* model). In our current exploration of GE 
covariance, we only considered processes giving 
rise to AE covariance or AE* covariance. We have 
not addressed other sources of covariance, such as 
AC covariance, which are distinct from AE* and AE 
covariance, as these forms were beyond the scope of 
this article. We hope to extend our present results to 
the ACE model in the near future.   

We conclude that sibling interaction and niche 
picking, conceptualised as the regression of 
environmental influences (E or E*) on the 
phenotypic variable, can be accommodated in the 
genetic simplex models considered here. While these 
models are identifiable given appropriate constraints, 
the issue of power requires attention, as does the 
generalisation to the standard ACE model. The 
application of these models, given adequate sample 
sizes, will ultimately allow one to establish whether 
these sources of GE covariance play any role in 
complex phenotypes, as is often suggested (e.g., in 
discussions of cognitive abilities). 
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In this paper we hope to further advance the use of structural equation modelling to test longitudinal measurement 
invariance. To achieve this we discuss two different procedures to test invariance. We illustrate the differences by 
applying both procedures to an example of longitudinal data from lung cancer patients. One procedure relies on the 
modification indices (MI) and expected parameter changes (EPC) to assess the tenability of the equality constraints 
imposed on parameters across two measurement occasions. However, as Saris, Satorra and Van der Veld (2009) 
have suggested that this procedure can be improved upon by taking the power of the MI into account, our first 
procedure will include MI, EPC, and power. In the second procedure, we rely on global tests and standardised 
observed parameter changes (SOPC) rather than expected changes. Both procedures guard against chance 
findings, though they do so in very different ways that can lead to different results. 

Where: Netherlands Journal of Psychology, Volume 67, 91-100

Comparison of procedures used  
to test measurement invariance  
in longitudinal factor analysis

When we use structural equation modelling (SEM) 
to investigate measurement invariance the aim is 
to investigate whether the relationships between 
the observed items and the latent attribute remain 
constant across measurement occasions or groups. 
Violations of measurement invariance (measurement 
bias) can distort conclusions about common factor 
mean differences either among diverse groups 
or over time. Testing measurement invariance 
has become prevalent; therefore it is important 
that valid and reliable procedures are used to 
detect measurement bias. Formally, measurement 
invariance is expressed as

f1(X|A = a, V = v) = f2(X|A = a)			 
					   
where X refers to a set of observed variables, A 
is the latent attribute measured by X, and V can 
represent anything that has the potential to affect 
the relationship between X and A. In longitudinal 
research, and in this paper, V represents time, but 
could also represent group membership, such as 

sex or race, or another attribute not represented by 
A. The function f1 is the conditional distribution 
function of X given a and v; the function f2 is the 
conditional distribution function of X given a. 
In the above equation conditional independence 
holds. However, if f1 ≠ f2, then it can be said that 
the measurement of A by X is biased with respect 
to V and measurement invariance has been violated 
(Mellenbergh, 1989). 

To test measurement invariance over time we rely 
on confirmatory factor analysis (CFA) of the mean 
and covariance structures. There are three levels of 
invariance essential for unbiased comparison of the 
common factor means: 1) Configural invariance - 
tests whether the same measurement model holds 
over time, i.e., with the same factor pattern, 2) 
Metric invariance - tests the invariance of the factor 
loadings over time by constraining them to equality, 
and 3) Scalar invariance - tests the invariance of 
the intercepts by adding equality constraints. It is 
these three tests that are critical to making valid 



conclusions regarding change because they may 
affect assessment of change in the common factor 
means (Meredith & Horn, 2001; Oort, 2005; Sayer & 
Cumsille, 2001). Additional measurement invariance 
hypotheses can be tested, see Vandenberg and Lance, 
(2000) for a comprehensive review.

There are a number of procedures that have been 
proposed to detect measurement bias, or to test 
metric and scalar invariance. The problem that 
affects all procedures is chance findings. This is 
due to the large number of tests being considered. 
In this paper, we highlight why this is particularly 
problematic when relying solely on modification 
indices (MI), the most frequently used procedure, 
to test metric and scalar invariance, and discuss in 
detail two alternative procedures. For illustrative 
purposes, both alternative procedures are applied 
to an empirical example. We will discuss any 
differences in the detection of measurement 
invariance identified in the illustrative example and 
why these occur. Advantages and disadvantages of 
the procedures will also be discussed. 

Procedures for identifying  
biased parameters

If the assumption of measurement invariance is 
violated, overall model fit statistics cannot be used to 
locate the biased item and identify which parameter 
the bias is associated with. To locate and identify 
such bias, most researchers turn to the MIs. The 
MIs can be helpful in this situation as they provide 
an indication of the size of the improvement in 
the overall chi-square statistic if the parameter in 
question were freed to be estimated. In general there 
are three important points to consider when using 
the MIs; 1) the number of possible modifications, 
2) the interpretability of the modification, and 3) 
the power of the MI and size of the sample. These 
points are important so as to prevent changes made 
to the model that are solely data driven. MacCallum, 
Roznowski and Necowitz (1992) argue that 
whenever a model is modified using a data-driven 
strategy there is a strong possibility that some of the 
re-specifications made will be due to chance, and this 
possibility must be addressed and dealt with.

Number of possible modifications
The researcher can re-adjust the critical value the 
MI is assessed with, using a Bonferroni correction. 
This is achieved by calculating the number of 
plausible parameters to be investigated in regards to 
bias and re-adjusting the critical value to maintain 
a family wise Type I error rate of 5%. For example, 
if we have 80 parameters to consider, then only MI 
(with its chi-square distribution with one degree 

of freedom) larger than 11.7 (associated with a 
probability of 0.05/80) would be considered as 
an indication of bias. This classical approach has 
a detrimental effect on power. To overcome this, 
power-increasing adaptations to the Bonferroni 
procedure have been suggested; for example, when 
the number of tests under consideration changes, 
then the size of the critical value is re-adjusted 
(Hochberg & Benjamini, 1990; Holm, 1979). 

Interpretability of the modification
Despite the warnings regarding the use of MIs, 
they are still the main and often only tool used to 
identify parameter misspecification. Even when 
precautions are taken, it may be the case that an 
MI suggests freeing a parameter that results in a 
significant decrease in the chi-square statistic, but 
the parameter estimate may change very little. This 
suggests that the modification to the model was not 
substantively meaningful and when testing equality 
constraints, it suggests that the equality constraint 
was in fact tenable. This can occur because 1) large 
sample size leads to high power to detect small 
but significant changes in the parameter, or 2) the 
model is poorly specified (Kaplan, 1990). As a 
result, decisions regarding the tenability of equality 
constraints should not be made solely on the size of 
the MIs. In a review of the techniques for evaluating 
misspecifications Kaplan (1990) discusses going 
beyond the MI, and also looking at the power 
associated with the MI, and expected parameter 
change (EPC). When using power and EPCs in 
conjunction with the MIs, the assessment of the 
tenability of the equality constraints will have greater 
reliability and chance findings will be reduced (Saris, 
Satorra, & Sörbom, 1987; Kaplan, 1990). Each of 
these established additional statistics are briefly 
discussed below. 

When testing invariance, power is the probability 
of rejecting an equality constraint when in reality 
the equality constraint does not hold. Knowing 
the size of the MI and the power of the MI is not 
enough additional information, therefore the EPC 
can also be investigated (Saris, et al., 1987) to assess 
equality constraints. The EPC indicates the size of 
the expected change in the parameter estimate were 
it to be freed. This information helps to determine 
whether the parameter changes should be considered 
substantially valuable. The scale, however, of the 
EPC in CFA is arbitrary, which leads to difficulties in 
making comparisons across different estimate values 
and determining whether the value is ‘large’ or 
‘small’ (Kaplan, 1989). There are a number of ways 
to overcome this; both Kaplan (1989) and Chou and 
Bentler (1993) suggested standardising the expected 
parameter change, these values are available in most 
standard structural equation modelling software. 
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Saris et al. (1987) propose a slightly different 
solution that will be further discussed below under 
Procedure 1. 
How the MI, power of the MI, and EPC are applied, 
as suggested by Saris et al. (1987), has the potential 
to lead to different conclusions with respect to 
which parameters show measurement bias when 
testing measurement invariance. In the following 
sections we will describe how these statistics can be 
combined and we will also introduce an alternative 
procedure.

Procedure 1 – Modification indices 
and expected parameter changes

In this procedure MI, power of the MI and EPCs are 
considered to detect measurement invariance once 
the across occasion equality constraints have been 
placed on the factor loadings and intercepts. Rather 
than directly standardising the EPC, it is possible 
to choose a standardised misspecification size and 
convert this value to the scale of each EPC, and 
investigate whether the EPC is less than or greater 
than this value. To achieve this, the value chosen 
to represent misspecification is divided by the 
standard deviation of the observed score associated 
with the particular EPC in question. Substantial 
misspecification is indicated when the EPC is greater 
than the un-standardised cutoff value, with the 
cutoff point being determined by the researcher. As 
calculating all these cutoff values is time consuming, 
Saris, Satorra and Van der Veld (2009) developed 
the JRule program to aid in these calculations. JRule 
reads the output generated by two popular SEM 
programs (LISREL and Mplus), and then produces 
its own output file with the additional calculations 
for these cutoffs and power and the MIs and EPCs. 
As we will rely on Jrule to test measurement 
invariance, we will use the standardisation of the 
EPCs suggested by Saris et al. (1987).

Using the MI, EPC and power, Saris et al. (1987) 
argue that there are four possible outcomes. 
These four outcomes are: 1) no bias – the equality 
constraint is tenable, as the MI is not significant and 
the power is high; 2) bias – the equality constraint 
is not tenable as the MI is significant and the power 
is low; 3) possible bias – the MI is significant and 
the power is high. Saris et al. (2009) propose in this 
situation that the researcher checks whether the EPC 
is greater than the cutoff value. If the EPC is greater 
than the cutoff, bias is considered present and; 4) 
undetermined – there is not enough information to 
determine if the equality constraint is tenable as 
the power is low (<.80) and the MI is small (not 
significant). These four outcomes are also reported 
in JRule.

Advantages and disadvantages
The advantage of using this procedure is that it 
is time efficient as only the relevant models (i.e., 
models where a biased parameter has been freed) 
need to be investigated and with the aid of JRule 
no additional hand calculations are required. It can 
be argued that the four outcomes provide a clear 
course of action. However, in the fourth outcome, it 
is not possible to determine whether bias is present, 
leaving the researcher with no clear course of 
action, which is disadvantageous. Finally, while the 
procedure was proposed to reduce chance findings, 
we must face the fact that MI, power of MI and EPC 
are all related to each other, so chance findings may 
still occur. (see Saris et al. (2009)). 

Procedure 2 – Global tests and  
observed parameter change

An alternative procedure to guard against chance 
findings is to apply global tests and calculate 
the observed parameter change when testing the 
invariance of each observed variable in a series of 
nested models. In global testing (King-Kallimanis, 
Oort & Garst, 2010) we rely on the chi-square 
difference test. We do this in an attempt to guard 
against chance findings in three ways: 1) by directly 
testing specific hypotheses, 2) by using the global 
test we simultaneously consider the invariance 
of multiple parameters (both factor loadings 
and intercepts), and 3) by conducting all tests at 
Bonferroni adjusted levels of significance (Holm, 
1979). However, the limitation of using only global 
tests is that we rely solely on statistical testing 
to detect measurement bias. This is problematic 
because as power increases, small, yet significant 
differences are detected as bias, which in fact are 
substantively irrelevant. 

To overcome this shortcoming, we also calculate the 
standardised observed parameter change (SOPC) 
for both the factor loadings and intercepts: SOPCλ= 
λiA* — λiR* where λiA* refers to the standardised 
estimated factor loadings (λiA* = λiA /σi where λiA 
is the unstandardised factor loading and σi is the 
standard deviation) in the alternative model for item 
i when the equality constraints are removed and λiR* 
refers to the standardised estimated factor loadings 
in the fully restricted model where those same 
parameters are constrained to equality over time. 
Similarly, SOPCτ = τiA* — τiR* where τiA* refers to 
the rescaled estimated intercepts (τiA*= τiA / σi where 
τiA is the unstandardised intercept estimate and σi is 
the standard deviation) in the alternative model for 
item i when the equality constraints are removed 
and τiR* refers to the rescaled intercepts in the fully 
restricted model where those same parameters 
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are constrained to equality over time. Using the 
SOPC we are able to simultaneously test the size of 
multiple parameters, whereas the standardised EPC 
considers only single parameters. 

To investigate measurement invariance, the fully 
restricted model is fit with all across occasion 
equality constraints on the factor loadings and 
intercepts included. Next, a series of alternative 
models are fit. There is an alternative model for 
each observed variable included in the measurement 
model. In each alternative model the equality 
constraints on both the factor loadings and the 
intercepts associated with the particular observed 
variable are removed. The alternative and fully 
restricted models are compared using the global 
test, which is a multiple degree of freedom test 
(degrees of freedom are dependent on the number 
of measurement occasions). An SOPC is calculated 
for each parameter where the equality constraint 
was removed. When the global test is significant 
and in conjunction with an SOPC that meets a pre-
defined cutoff value, then we consider the associated 
observed variable as biased. If this occurs, the factor 
loadings and intercepts of the biased observed item 
remain free, and a new series of alternative models 
are fit, this is repeated with adjusted levels of 
significance (Holm, 1979) until no global tests and 
SOPCs meet the criteria. As with Procedure 1, the 
cutoff value is determined by the researcher.

Advantages and disadvantages
The main advantage of using global tests and SOPCs 
is that in testing all alternative models, the impact 
of freeing a small number of parameters associated 
with an observed variable can be seen and it 
reduces chance findings as multiple parameters are 
considered simultaneously. The main disadvantage 
is that all possible alternative models are tested; 
therefore the procedure is time intensive. 

Illustrative example

Data
To illustrate the procedures outlined above, we used 
data from a longitudinal study that investigated the 
health-related quality-of-life (HRQoL) of patients 
with primary inoperable lung cancer. The data 
utilised in this example came from 216 patients who 
completed the baseline questionnaire that was on 
average about two weeks after diagnosis and the first 
follow-up questionnaire that was approximately two 
weeks following baseline (Tishelman, et al., 2005). 

To measure HRQoL the European Organisation 
for Research and Treatment of Cancer (EORTC) 
QLQ-C30 questionnaire was used (Aaronson, et 

al., 1993). The questionnaire includes 30 items 
on a seven-point response scale that cover nine 
multi-item domains: Physical Functioning (PF: 5 
items), Role Functioning (RF: 2 items), Fatigue 
(FA: 3 items), Nausea and Vomiting (NV: 2 items), 
Pain (PA: 2 items), Emotional Functioning (EF: 
4 items), Cognitive Functioning (CF: 2 items), 
Social Functioning (SF: 2 items) and Global 
Health Status (GH: 2 items). An additional six 
domains are measured with single items. Also 
included was the lung cancer specific module of the 
EORTC QLQ-C30, the EORTC-LC13 (Bergman, 
Aaronson, Ahmedzai, Kaasa & Sullivan, 1994). The 
questionnaire has three items scored on a four-point 
response scale that cover one multi-item domain, 
symptoms of dyspnoea (DY), and 10 single item 
domains. Only the multi-item domains from both 
the EORTC QLQ-C30 and the EORTC-LC13 (ten 
in total) are included in the current analysis and 
items are simply summed to create continuous 
scores. Symptom related scores were reversed, so 
that higher scores indicate less symptoms. The range 
of scores is scaled such that all sub-scales range 
from 0 to 100, with higher scores, for all scales, are 
indicative of better HRQoL. 

Analysis strategy
To test invariance we carried out three steps. The 
goal of Step 1 was to identify a factor model for the 
EORTC QLQ-C30 that met the requirements for 
configural invariance and had a clear interpretation 
and good fit. Fit was assessed using the chi-square 
test of exact fit, and the approximate fit indices, root 
mean square error of approximation (RMSEA) and 
expected cross-validation index (ECVI). When using 
CFA it is necessary to provide scale and origin to 
the common factors. There are three possible ways 
to achieve this (for details see Reise, Widaman and 
Pugh (1993)). As we provide scale and origin via 
constraints on the factor loadings and intercepts the 
goal of Step 2 was to identify invariant indicators 
using the List and Delete procedure outlined by 
Rensvold and Cheung (2001). In this procedure, a 
series of models are run in order to identify which 
unbiased indicators could be used to provide scale 
and origin. In Step 3 we constrain all factor loading 
and intercepts to equality across measurement 
occasions and investigate measurement invariance 
using Procedures 1 and 2. In Procedure 1 we 
investigated measurement invariance using the MIs 
and EPCs and in Procedure 2 we used Global Tests 
and SOPCs. All analyses were conducted using 
LISREL 8.54 with maximum likelihood estimation. 
For additional calculations Mx (Neale, 2010) and 
JRule 3.0.4 (van der Veld, Saris & Satorra, 2008) 
were used. 
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Results

Step 1 – Establish a measurement model
The construct of HRQoL is often represented by 
two factors: Physical HRQoL and Mental HRQoL. 
Therefore, we specified a model where, at both 
measurement occasions, seven domains loaded 
on the Physical HRQoL common factor and four 
domains loaded on the Mental HRQoL common 
factor (see Figure 1). Though the chi-square test 
was significant, the RMSEA indicated satisfactory 
fit (Model 1, χ2 302.08 (152), p <0.001, RMSEA 
=0.068, 90% CI (0.056 ; 0.079)). In addition, 
the standardised residuals did not suggest any 
substantive misspecification. To provide scale and 
origin to this model (factor loading and intercepts set 
to a constant), the first observed variable of Physical 
HRQoL and the last observed of Mental HRQoL at 
both measurement occasions were used. 

Step 2 – Providing unbiased scale and origin to 
the common factors 
To ensure that we chose an invariant indicator, 
we used the List and Delete procedure (Rensvold 
& Cheung, 2001). This required fitting a series of 
models where there was a null model (Model 1, 
Step 1, no equality constraints), and an alternative 
model where one factor loading and one intercept 
were set to a constant and another factor loading and 
intercept were set to equality over time and the fit 
of the alternative model was compared with the null 
model. We tested all possible pairs of constraints 
for Physical HRQoL and then did the same for 
Mental HRQoL. After testing all possible pairs, Role 
Functioning was designated to provide scale and 
origin for Physical HRQoL and Social Functioning 
for Mental HRQoL. These variables were chosen 
because when tested there was the least deterioration 
in model fit. 

Step 3 –Procedure 1: Investigate measurement 
invariance using modification indices and 
expected parameter changes
In this step, all factor loadings and intercepts 
from Model 1 were constrained to be equal across 
time (Model 2, χ2 (169) = 359.98, p = <0.001, 
RMSEA =0.071, 90% CI (0.061 ; 0.081)). We 
chose to consider misspecifications that minimally 
corresponded to small effect sizes (Cohen, 1988) as 
indicative of measurement bias. This corresponded 
to a factor loading difference of ≥. 10 and an 
intercept difference of ≥ .20. Using the MI, power 
of the MI and EPC, the results indicated that ten 
out of 16 plausible factor loading constraints were 
tenable (no bias) and six out of 16 plausible intercept 
constraints were tenable (no bias). The results 
for the remaining factor loadings and intercepts 
indicated that the power was high (≥ .80) and the 
MIs were significant, therefore we investigated the 
EPCs (see Tables 1 and 2). The EPCs indicated 
that the misspecifications were generally very 
small and did not meet our criteria. There was 
one exception, where the EPC associated with the 
intercept of Emotional Functioning at the second 
measurement occasion met our criteria (Table 2). 
Equality constraints were removed for the intercept 
of Emotional Functioning, and the MIs, power of the 
MIs and EPCs for this new model were investigated. 
No additional misspecifications were identified. The 
chi-square for this final model was significant, but 
the RMSEA was satisfactory ( χ2 (168) = 341.94, p 
= <0.001, RMSEA =0.069, 90% CI (0.058 ; 0.079)) 
(See Figure 1, for parameter estimates).
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Scale 	 Modification	 EPC	 Cutoff†	 Power	 Decision 
	 index

DY1 – Phys HRQoL		  3.28	 -	0.01		 0.09	 0.99	 No bias
PF1 – Phys HRQoL		  4.03		  0.02		 0.09	 0.99	 EPC -> no bias
RF1 – Phys HRQoL		   NA				  
FA1 – Phys HRQoL		  0.05		  0.00		 0.10	 0.99	 No bias
NV1 – Phys HRQoL		  6.36		  0.02		 0.07	 0.99	 EPC -> no bias
PA1 – Phys HRQoL		  0.07		  0.00		 0.12	 0.99	 No bias
GH1 – Phys HRQoL		  0.36		  0.00		 0.09	 0.99	 No bias
GH1 – Ment HRQoL		  0.12	 -	0.01		 0.12	 0.98	 No bias
EF1 – Ment HRQoL		 15.78	 -	0.09		 0.12	 0.99	 EPC -> no bias
CF1 – Ment HRQoL		  5.00		  0.04		 0.12	 0.99	 EPC -> no bias
SF1 – Ment HRQoL	   	NA				  
DY2 – Phys HRQoL		  3.28		  0.03		 0.09	 0.99	 No bias
PF2 – Phys HRQoL		  4.03	 -	0.02		 0.08	 0.99	 EPC -> no bias
RF2 – Phys HRQoL		   NA				  
FA2 – Phys HRQoL		  0.05		  0.00		 0.10	 0.99	 No bias
NV2 – Phys HRQoL		  6.36	 -	0.05		 0.08	 0.98	 EPC -> no bias
PA2 – Phys HRQoL		  0.07	 -	0.01		 0.11	 0.99	 No bias
GH2 – Phys HRQoL		  0.36		  0.02		 0.09	 0.98	 No bias
GH2 – Ment HRQoL		  0.12		  0.00		 0.12	 0.99	 No bias
EF2 – Ment HRQoL		 15.78		  0.00		 0.11	 0.99	 EPC -> no bias
CF2 – Ment HRQoL		  5.00		  0.00		 0.12	 0.99	 EPC -> no bias
SF2 – Ment HRQoL	   NA				  

† These cutoffs correspond to a difference of 0.10 for standardised factor loadings;
NA refers to parameter used to provide scale to the common factors; EPC = expected 
parameter change; DY = dyspnoea; PF = physical functioning; RF = role functioning; FA 
= fatigue; NV = nausea; PA = pain; GH = general health; EF = emotional functioning; CF 
= cognitive functioning; SF = social functioning; Phys HRQoL = physical health-related 
quality-of-life; Ment HRQoL = mental health-related quality-of-life

Table 1	Results from Procedure 1 for factor loadings from fully constrained 
	 model (Model 2) 



In regards to the bias identified, the estimate of 
the intercept of Emotional Functioning was lower 
at baseline than at follow-up. Apparently it was 
more difficult to give a positive response to the 
Emotional Functioning scale shortly after diagnosis, 

relative to the respondents Mental HRQoL (see 
Figure 3b). At follow-up, patients scored higher on 
the Emotional Functioning scale (better Emotional 
Functioning) relative to their Mental HRQoL. 
Perhaps when patients were initially diagnosed they 
felt overwhelmed, but after starting treatment some 
of the anxiety was relieved because something was 
being done to treat their lung cancer, and they also 
had the support of family and friends.

Step 3 – Procedure 2: Investigate measurement 
invariance using Global Tests and SOPCs 
Initially, all factor loadings and intercepts were 
simultaneously constrained to equality over time 
(Model 2, Table 3). All alternative models were 
tested and their fit assessed. Equality constraints 
were considered not tenable when there was a 
significant global test (α* = 0.05/10 = 0.005) and 
large SOPCs. The SOPCs were considered to 
represent substantial misspecification when the 
factor loading SOPCs were ≥.10 and the intercept 
SOPCs ≥.20 (the same sizes that were used in 
Procedure 1). In the first iteration, the removal of 
the equality constraints associated with Dyspnoea 
parameters lead to a significant chi-square difference 
test and large SOPCS (Table 3, Model 3). Leaving 
all parameters associated with Dyspnoea free to 
be estimated and readjusting the significance (α* = 
0.05/9 = 0.005), the model with the parameters of 
Nausea free also met our criteria. In the next series 
of models, no model met our criteria; therefore 
Model 4 (Table 3) was considered as the final model 
(See Figure 2, for parameter estimates).

The two violations of invariance were associated 
with the intercepts for the Dyspnoea and Nausea 
scales (see Table 3). Apparently it was more difficult 
for patients to give a positive (less symptoms) 
response to the Dyspnoea scale shortly after their 
diagnosis relative to the respondents Physical 
HRQoL (see Figure 3a). At follow-up, patients 
scored higher (less symptoms) relative to their 
overall Physical HRQoL. In general, symptoms 
of Dyspnoea did not worsen as much as expected 
given that Physical HRQoL significantly decreased 
over time (Figure 3a). Perhaps when patients were 
initially diagnosed, they conceptualised Dyspnoea 
as a primary symptom of lung cancer, but after 
beginning treatment they believed that the treatment 
was reducing this symptom. In regards to Nausea, 
the opposite was seen. Apparently it was more 
difficult for patients to give a negative response 
(more symptoms) to Nausea items shortly after 
diagnosis. At follow-up, patients scored lower (more 
symptoms) relative to their overall Physical HRQoL. 
Therefore, Nausea worsened more than we would 
have expected given the general decrease in Physical 
HRQoL as can be seen in Figure 3b. It is possible 
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	 Modification 	 EPC	 Cutoff†	 Power	 Decision 

DY1		  10.10	 -	0.17	 0.47	 0.99	 EPC -> no bias
PF1		  6.44		  0.16	 0.44	 0.99	 EPC -> no bias
RF1		    NA				  
FA1		  0.13	 -	0.03	 0.54	 0.99	 No bias
NV1		  12.01		  0.20	 0.35	 0.99	 EPC -> no bias
PA1		  0.19	 -	0.05	 0.61	 0.99	 No bias
GH1		  0.06		  0.00	 0.44	 0.99	 No bias
EF1		  17.58	 -	0.11	 0.46	 0.99	 EPC -> no bias
CF1		  7.25		  0.05	 0.45	 0.99	 EPC -> no bias
SF1	    NA				  
DY2		  10.10		  0.19	 0.48	 0.99	 EPC -> no bias
PF2		  6.44	 -	0.09	 0.45	 0.99	 EPC -> no bias
RF2	    NA				  
FA2		  0.13		  0.02	 0.54	 0.99	 No bias
NV2		  12.01	 -	0.30	 0.44	 0.99	 EPC -> no bias
PA2		  0.19		  0.03	 0.58	 0.99	 No bias
GH2		  0.06		  0.03	 0.47	 0.99	 No bias
EF2		  17.58		  0.46	 0.44	 0.98	 EPC -> bias
CF2		  7.25	 -	0.31	 0.46	 0.98	 EPC -> no bias
SF2	    NA				  

† These cutoffs correspond to a difference of 0.20 for standardised intercepts; NA 
refers to parameter used to provide origin to the common factors; EPC = expected 
parameter change; DY = dyspnoea; PF = physical functioning; RF = role functioning; FA 
= fatigue; NV = nausea; PA = pain; GH = general health; EF = emotional functioning; CF 
= cognitive functioning; SF = social functioning; Phys HRQoL = physical health-related 
quality-of-life; Ment HRQoL = mental health-related quality-of-life 

Table 2	Results from Procedure 1 for intercepts from fully constrained model 		
	 (Model 2)

Figure 1 EORTC QLQ-C30 measurement model for Procedure 1. Factor loadings and intercepts 
of Model 3.1a
DY = dyspnoea; PF = physical functioning; RF = role functioning; FA = fatigue; 
NV = nausea; PA = pain; GH = general health status; EF = emotional functioning; 
CF = cognitive functioning; SF = social functioning



that this bias occurred as a result of treatment 
side effects. It seems likely that once treatment is 
completed, we would see the intercept for Nausea to 
increase to its pre-treatment value. 

Comparison of results
Different results were obtained in Procedure 1 to 
those found in Procedure 2. We believe the primary 
reason the results differ is because in Procedure 
1 each equality constraint is treated as a single 
parameter that may or may not be misspecified, 
whereas in Procedure 2, the equality constraints 
are treated as a set of multiple parameters. For 
example, in Table 3, we can see that the SOPCs 
for the intercepts of Dyspnoea were not larger than 
0.20 individually; however the combined difference 
between the two estimates was greater than a small 
effect. A secondary reason is because Procedure 1 
relies on expected changes in the model, whereas in 

Procedure 2, the SOPCs are observed changes. When 
the OPC was calculated for the intercept at follow-up 
for Emotional Functioning, the value was smaller 
than the EPC (OPCτ2 = 0.037) and below the cutoff 
for this parameter. This indicates that there was little 
actual difference in the intercept. 

Before bias was accounted for, there was no 
significant change in either the Physical or Mental 
HRQoL latent means. After accounting for bias 
in Procedure 1, this result remained the same. 
However, the latent means for Mental HRQoL 
before accounting for bias had a slight upward trend 
(not significant) and after accounting for bias, this 
trend became negative (not significant). Once bias 
was accounted for in Procedure 2, we concluded 
that that there was a small significant decrease in 
Physical HRQoL; the conclusion for Mental HRQoL 
remained the same (See Figures 3a and 3b). 

Discussion/ Conclusion

In this paper, we illustrate two procedures for 
testing invariance with SEM. Ultimately we 
came to different conclusions regarding which 
parameters were associated with measurement bias. 
As noted in the results, in Procedure 1 we tested 
single parameters, whereas in Procedure 2 we 
considered multiple parameters simultaneously. In 
both procedures, misspecification was considered 
substantial when EPCs and SOPCs were associated 
with a standardised change of ≥.10 for factor 
loadings and ≥.20 for intercepts. However, because 
of the single/multiple parameter distinction 
we are not actually testing for the same size of 
misspecification. In an attempt to overcome this, 
we also investigated what would happen if we 
reduced the size of the misspecification tested in 
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	 Model	 CHISQ		  RMSEA	 Comparison	 CHISQ	 P -value	 ECVI
		  (df)	 SOPC	 (90 % CI)	 models	 DIFF (df)		  (90% CI)

1	 Measurement model 1	 302.08	 NA	 0.068	 NA	 NA	 NA	 2.131
		  (152)		  (0.056 ; 0.079)				    (1.825 ; 2.286)

2	 Addition of equality	 359.98	 NA	 0.071	 1 vs. 2	 57.90	 <0.001	 2.208
	 constraints	 (169)		  (0.061 ; 0.081)		  (17)		  (1.883 ; 2.384)

3	 Dyspnoea equality	 345.91	 λ1 -0.015 λ2 0.010	 0.069	 2 vs. 3	 14.07	 0.001	 2.152
	 constraints freed 	 (167) 	 τ1 0.110 τ2 -0.160	 (0.058 ; 0.079)		  (2)		  (1.833 ; 2.321)

4	 Nausea equality	 334.34	 λ1 0.010 λ2 -0.009	 0.068	 3 vs. 4	 11.57	 0.003	 2.139
	 constraints freed	 (165)	 τ1 -0.179 τ2 0.140	 (0.057 ; 0.079)		  (2)		  (1.824 ; 2.305)
			 

Note: λ1 = time 1 factor loading, λ2 = time 2 factor loading, τ1 = time 1 intercept, τ2 = time 2 intercept

Table 3	Results from procedure 2 – overall goodness-of-fit, SOPCs and chi-square difference tests

Figure 2 EORTC QLQ-C30 measurement model for Procedure 2. Factor loadings and intercepts 
of Model 3.2b
DY = dyspnoea; PF = physical functioning; RF = role functioning; FA = fatigue; NV = 
nausea; PA = pain; GH = general health status; EF = emotional functioning; CF = cognitive 
functioning; SF = social functioning



Procedure 1. This resulted in identifying different 
results than those reported in the results section for 
both Procedure 1 and Procedure 2. For example, 
when misspecification associated with the intercepts 
was reduced to ≥.10 rather than ≥.20. The results 
suggested equality constraints on the intercepts 
of Nausea over measurement occasions and the 
intercept of Cognitive Functioning at follow-up 
were not tenable. This was because the MI was 
significant, the power was moderate and the EPC 
was large. While the finding regarding Nausea is 
consistent with the results of Procedure 2, the finding 
regarding Cognitive Functioning intercepts was not. 
Therefore, simply reducing the misspecification size 
does not resolve the differences found in the results 

for both procedures. In this illustrative example, 
we are limited because we do not know where the 
true bias exists. To resolve this limitation, future 
work is needed where data are simulated and both 
procedures are applied to identify biased parameters.

Both procedures presented in this paper offer 
the flexibility to allow the researcher to choose 
what size of misspecification they believe to be 
acceptable. However, it appears that the decision 
to test single or multiple parameters needs to be 
taken into consideration as it has the potential to 
affect the results. Also, using Cohen small effect 
sizes to indicate substantive measurement bias in 
both procedures may or may not be ideal, (though 
was initially suggested by Kaplan (1990). This 
is because limited work has been conducted that 
investigates appropriate misspecification sizes 
(Whittaker, 2012). Further research that investigates 
the impact of decisions with respect to the size of 
the misspecification under different circumstances 
(i.e., sample size, number of parameter under 
consideration) is needed to guide applied researchers 
wishing to apply either procedure.

Both procedures presented in this paper aim to guard 
against chance findings, and both procedures are 
an improvement on relying on MIs alone; however, 
there are limitations. In Procedure 1, power was 
calculated for each MI, however, knowing the power 
in our illustrative example did not aid the decisions 
regarding the tenability of the equality constraints. 
This is because the power was very high (> .97) for 
all parameters investigated. Therefore, all decisions 
regarding the tenability of the equality constraints 
when the MI was significant were based on the size 
of the EPC. However, the EPC should be informative 
regardless of the power and when investigating 
both MIs and EPCs the Type II error rate should be 
reduced. This may be especially true in the presence 
of multivariate non-normality. This is because 
the MI may be affected by the multivariate non-
normality, but the EPC should be relatively stable 
as they are associated with the parameter estimates 
(Hoogland & Boomsma, 1998). Parameter estimates 
are less affected than the standard errors and MIs, 
though no research, to our knowledge, has been 
conducted regarding the conditions under which the 
EPC remains stable. In this paper, the EPC predicted 
a larger change in the intercept associated with 
Emotional Functioning than was actually observed. 
This is an area in need of further research.

In Procedure 2, unlike Procedure 1 where the 
calculations are easily computed with the aid of 
JRule, all alternative models were run and the 
SOPCs were calculated separately. This is a very 
time-intensive process, and while this aspect of 
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Figure 3a Physical HRQoL mean change

Figure 3b Mental HRQoL mean change



the procedure is disadvantageous, it can also be 
considered to be advantageous. This is because each 
constraint is given substantial consideration before 
it is determined whether the equality constraint is 
tenable. As the process of testing equality constraints 
is essentially a data-driven process, by testing each 
alternative model, the researcher is able to observe 
the impact of equality constraint removal on all 
estimated parameters. This in turn should improve 
substantively based decisions, especially when the 
bias is marginal. 

In this paper we relied on the factor loadings and 
intercepts to provide scale and origin to the latent 
constructs. While this is the most frequently used 
approach, it is not the best choice when testing 
invariance. This is because by setting a factor 
loading and intercept to a constant to provide scale 
and origin we assume that these parameters are 
invariant. While procedures have been proposed 
for ensuring that invariant parameters are used 
to provide scale and origin (Byrne, Shavelson & 
Muthen, 1989; Rensvold & Cheung, 2001) these 
procedures are not frequently used and are time 
consuming to carry out. An alternative for setting 
scale and origin is to constrain the factor variances 
of the first measurement occasion to equal unity, 

and to include at least one factor loading that is 
constrained to equality over measurement occasions 
(Oort, 2001; Reise et al., 1993; Yoon & Millsap, 
2007). In this paper, we scale via factor loadings and 
intercepts, to highlight the most frequently used form 
of scaling and because the computations calculations 
for Procedure 1 required this form of scaling. The 
global tests and SOPCs can be calculated regardless 
of scaling, and thus provide the researcher with the 
flexibility to proceed using methods that are suited to 
their research needs. 

In conclusion, both procedures can be used to 
detect measurement bias. However, we believe 
that additional step of transferring the output to the 
JRule program in Procedure 1 does not provide 
any additional information when the sample size 
is adequate as the power will be high. Had we 
disregarded the power of MI then we would not 
have made any different decisions than those 
we came to by using Jrule. Procedure 2 requires 
additional calculations; however, we believe if 
the primary research question revolves around 
detecting measurement invariance then Procedure 2 
is exhaustive and provides empirical evidence with 
respect to biased parameters.
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